Читаем Том 11. Карты метро и нейронные сети. Теория графов полностью

ТОЧНЫЙ ПОДСЧЕТ

Пусть Р — выпуклый многогранник с r(Р) гранями. Рассмотрим два его параметра:

r(Р) — количество натуральных чисел i, таких что в Р существует грань с i ребрами;

К(Р) — число сторон грани Р с наибольшим числом вершин или ребер.

Так, в кубе Р r(Р) = 1, К(Р) = 4. Для пирамиды Р, в основании которой лежит пятиугольник, r(Р) = 2, К(Р) = 5.

Если многоугольник Р имеет грань, число сторон которой равно К(Р), так как каждая из этих сторон является ребром другой грани, то общее число граней будет равно как минимум К(Р) + 1, то есть

С(Р) >= К(Р) + 1.

Так как r(Р) не может быть больше, чем число элементов множества {3, 4, 5, К(Р)}, то

r(Р) = < К(Р) — 2.

На основании вышеприведенных неравенств для С(Р) и r(Р) имеем:

С(Р) — r(Р) >= К(Р) + 1 — (К(Р) — 2) = 3.

Если бы все грани многогранника были бы различны, то выполнялось бы равенство С(Р) = r(Р) + 3, что невозможно.

* * *

Все стороны различаются между собой? Это невозможно!

Если вы не привыкли следовать правилам, то возможно, что вы задавались вопросом, существуют ли фигуры без повторяющихся элементов. Например, существует ли многогранник, все стороны которого являются различными многоугольниками: один треугольник, один четырехугольник, один пятиугольник и так далее. Это был бы образцовый многогранник — он мог бы поворачиваться разными сторонами и демонстрировать разные многоугольники. Живительно, но подобный многоугольник не может существовать. И этому есть очень красивое доказательство, в котором используются методы комбинаторики.

Представим на мгновение все возможные многогранники — правильные или неправильные. Если мы нарисуем все эти многогранники, то заметим, что всегда существует как минимум несколько граней, которые являются выпуклыми многоугольниками с одинаковым числом сторон. Чтобы ограничить многоугольниками какую-то область пространства, необходимо чтобы как минимум несколько из них повторялись.

Графы и мозаики

Рассмотрим три разных мозаики, которые представлены на рисунке. Все они, несомненно, знакомы вам, так как часто встречаются в повседневной жизни.

Это четырехугольная, треугольная и шестиугольная мозаики соответственно. Каждая из них представляет собой геометрический граф (определение геометрического графа приводилось выше). Число граней в этих графах может увеличиваться бесконечно: любым из этих графов можно заполнить всю плоскость. Заметим, что при увеличении мозаики для вершин, находящихся внутри, число ребер остается неизменным, и каждая грань ограничивается одним и тем же числом ребер за исключением бесконечно удаленных граней. Если на каждом шаге увеличения мозаики мы будем подсчитывать число вершин V и число вершин Vc, расположенных на краю (во внешнем цикле графа), то увидим, что с ростом V отношение Vc/стремится к нулю.

Это справедливо для всех трех рассмотренных типов мозаики. Далее мы продемонстрируем удивительный результат, основанный на следующем определении.

Правильная мозаика — это геометрический граф, который может покрыть плоскость; при этом число ребер а, сходящихся в каждой вершине, и число ребер Ь >= 3 каждой грани являются постоянными (за исключением внешних граней), причем Vc/V стремится к нулю.

Единственно возможными правильными мозаиками в соответствии с этим определением являются треугольная, четырехугольная и шестиугольная мозаики.

Пусть дана правильная мозаика М, которая имеет вершин, А ребер и Vc граничных вершин. Тогда 2А < aV, так как aV — это общее число ребер, получаемое, если поставить в соответствие каждой вершине (включая граничные) а ребер.

Если же мы не будем учитывать ребра, которые выходят из граничных вершин, получим аV — aVc < 2А.

Объединив эти два неравенства, имеем aV — aVc < 2А < aV.

Разделим все части неравенства на

Перейдем к пределу. При V, стремящемся к бесконечности, Vc/V стремится к нулю:

Подсчитаем число граней С мозаики М. С — 1 грань будет иметь Ь ребер, бесконечно удаленная грань будет иметь Vc ребер. Следовательно,

(C — 1)b + Vc = 2А.

Разделив на bV, получим:

Перейдя к пределу при V, стремящемся к бесконечности, с учетом выражения (*) получим:

(**)

Так как мозаика М — это геометрический граф, для нее выполняется формула Эйлера, которую можно записать в следующем виде:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное