Читаем Том 11. Карты метро и нейронные сети. Теория графов полностью

Если говорить кратко, то топология свободна от жестких структур евклидовой и проективной геометрии. С помощью «непрерывных преобразований» стало возможным моделировать новые фигуры и определять новые категории преобразований. Представим себе треугольник, нарисованный на поверхности шара. При сжатии шара (таком, что шар не ломается) треугольник будет принимать различную форму. Будут изменяться углы и длины сторон, но «сущность» треугольника будет оставаться неизменной: это по-прежнему будет фигура, определяемая тремя точками и тремя отрезками, соединяющими эти точки. Чтобы начать мыслить с топологической точки зрения, нужно представить, что все фигуры сделаны из резины и могут деформироваться. Так, деформацией сферы невозможно получить бублик, но зато бублик будет эквивалентен… чайной чашке.

Удивительная формула Эйлера

Рассмотрим выпуклый п-угольник с вершинами V, V2,..., Vn и ребрами V1V2,..., V2V3,...,Vn-1Vn, VnV1.

Вне зависимости от длин сторон, величин углов, кривизны ребер и прочих параметров, число ребер будет всегда равно числу вершин многоугольника. Это соотношение столь тривиально, что на него можно даже не обратить внимание. Если сохранить число вершин неизменным и заменить одно из прямых ребер любой простой кривой, это соотношение не изменится.

Перейдем в трехмерное пространство и рассмотрим произвольный выпуклый многогранник, который имеет вершин, А ребер и С граней. Если посмотреть на этот многогранник изнутри и спроецировать его на большую сферу, внутри которой он находится, то на эту сферу окажутся нанесены линии и соответствующие вершины так, что значения V, А и С останутся неизменными.

Многограннику также можно поставить в соответствие плоский граф, который будет иметь то же число ребер А, то же число вершин V и то же число граней С.

Можно заметить, что при С = 2 получится единственный многоугольник и VА, либо, что аналогично, С + V = А + 2. Если при С — n число вершин равно V, число ребер — Аn, и мы предположим (по индукции), что n + Vn = Аn + 2, то при Сn + 1 нужно заострить внимание на грани под номером n + 1. Когда число граней станет равным n + 1, к графу с n гранями, Vn вершинами и Аn ребрами добавится некоторое число вершин К и К + 1 ребро. Следовательно,

+ Vn+1 = + 1 + Vn+ = (+ Vn) + (+ 1) = (An + 2) + (K + 1) = (An + K + 1) + 2 = An+1 + 2.

Так доказывается знаменитая формула Эйлера, которая звучит следующим образом: в любом выпуклом многограннике выполняется соотношение

СV = A + 2.

Этот результат может показаться тривиальным, но если немного подумать, то мы увидим, что это соотношение поистине удивительно: оно выполняется для любого выпуклого многогранника независимо от формы его граней, углов на гранях и углов между гранями, от длин ребер и других параметров. Формула, которая выполняется для бесконечно большого числа разнообразных фигур, не может не привлекать внимание. Здесь что-то не так. Практически не существует формул, которые справедливы для столь непохожих фигур.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное