Существует еще один закон, который выполняется с хорошей точностью. Он гласит: изменение расстояния равно скорости, умноженной на интервал времени, за которое это изменение произошло, т. е. Δs=vΔt. Это правило строго справедливо только тогда, когда скорость не изменяется в течение интервала Δt, а это, вообще говоря, происходит, только когда Δt достаточно мало. В таких случаях обычно пишут ds=vdt, где под dt подразумевают интервал времени Δt при условии, что он сколь угодно мал. Если интервал Δt достаточно велик, то скорость за это время может измениться и выражение Δs=vΔt будет уже приближенным. Однако если мы пишем dt, то при этом подразумевается, что интервал времени неограниченно мал и в этом смысле выражение ds=vdt точное. В новых обозначениях выражение (8.5) имеет вид
Величина ds/dt называется «производной s по t» (такое название напоминает о том, что изменяется), а сложный процесс нахождения производной называется, кроме того, дифференцированием. Если же ds и dt появляются отдельно, а не в виде отношения ds/dt, то они носят названия дифференциалов. Чтобы получше познакомить вас с новой терминологией, скажу еще, что в предыдущем параграфе мы нашли производную от функции 5t2, или просто производную от 5t2. Она оказалась равной 10t. Когда вы больше привыкнете к новым словам, вам станет более понятна сама мысль. Для тренировки давайте найдем производную более сложной функции. Рассмотрим выражение s=At3+Bt+C, которое может описывать движение точки. Буквы A, B, C, так же как и в обычном квадратном уравнении, обозначают постоянные числа. Нам нужно найти скорость движения, описываемого этой формулой в любой момент времени t. Рассмотрим для этого момент t+Δt, причем к s прибавится некоторая добавка Δs, и найдем, как выражается Δs через Δt. Поскольку
а
то
Но нам нужна не сама величина Δs, а отношение Δs/Δt. После деления на Δt получим выражение
которое после устремления Δt к нулю превратится в
В этом состоит процесс взятия производной, или дифференцирования функций. На самом деле он несколько легче, чем это кажется на первый взгляд. Заметьте, что если в разложениях, подобных предыдущим, встречаются члены, пропорциональные (Δt)2 или (Δt)3 или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем Δt устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8.3.
Таблица 8.3 НЕКОТОРЫЕ ПРОИЗВОДНЫЕ
s, u, v, w — произвольные функции;
a, b, с, n — произвольные постоянные.
§ 4. Расстояние как интеграл
Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?
Таблица 8.4 СКОРОСТЬ ПАДАЮЩЕГО ШАРА
Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км/час, то замедляется, затем где-то останавливается у светофора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v1 , тогда по формуле Δs=v1Δt можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек). Этот процесс можно продолжить дальше, до самого конца пути. В результате мы получим много маленьких отрезков, которые в сумме дадут весь путь. Таким образом, путь является суммой скоростей, умноженных на отдельные интервалы времени, или s=∑vΔt, где греческая буква ∑(сигма) означает суммирование. Точнее, это будет сумма скоростей в некоторые моменты времени, скажем ti , умноженные на Δt:
(8.6)
причем каждый последующий момент ti+1 находится по правилу ti+1=ti+Δt. Но расстояние, полученное этим методом, не будет точным, поскольку скорость за время Δt все же изменяется. Выход из этого положения заключается в том, чтобы брать все меньшие и меньшие интервалы Δt, т. е. разбивать время движения на все большее число все меньших отрезков. В конце концов мы придем к следующему, теперь уже точному выражению для пройденного пути:
(8.7)