Читаем Том 1. Механика, излучение и теплота полностью

т. е. скорость есть предел отношения х/ε при ε, стремящемся к нулю. Для нашей машины-нарушительницы невозможно точно вычислить скорость, так как таблица неполная. Ее положение известно нам только через интервалы 1 мин. Приближенно, конечно, можно сказать, что в течение седьмой минуты, например, она шла со средней скоростью 90 км/час, однако о ее скорости в конце шестой минуты ничего сказать невозможно. Может быть, она ускорялась и скорость с 40 км/час в начале шестой минуты возросла до 90 км/час в конце ее, а может быть, она двигалась иначе. Мы не знаем этого точно, так как у нас нет детальной записи ее движения между шестой и седьмой минутами. Только когда таблица будет пополнена бесконечным числом данных, из нее можно будет действительно вычислить скорость. Если, однако, нам известна полная математическая формула, как, например, в случае падающего тела [уравнение (8.1)], то можно подсчитать скорость. Ведь по формуле можно найти положение тела в любой момент времени.

В качестве примера давайте найдем скорость падающего шара через 5 сек после начала падения. Один способ — это посмотреть по табл. 8.2, что происходило с шариком на пятой секунде. В течение этой секунды он прошел 45 м, так что, казалось бы, он падал со скоростью 45 м/сек. Однако это неверно, поскольку скорость его все время изменялась. Конечно, в среднем в течение этой секунды она составляла 45 м/сек, но в действительности шар ускорялся и в конце пятой секунды падал быстрее 45 м/сек. Наша задача состоит в том, чтобы определить скорость точно. Сделаем это следующим образом. Нам известно, где шарик находился через 5 сек. За 5 сек он прошел расстояние 125 м. К моменту 5,1 сек общее расстояние, которое прошел шарик, составит, согласно уравнению (8.1), 130,05 м. Таким образом, за дополнительную десятую долю секунды он проходит 5,05 м. А поскольку 5,05м за 0,1 сек то же самое, что и 50,5 м/сек, то это и будет его скорость. Однако это все еще не совсем точно. Для нас совершенно неважно, будет ли это скорость в момент 5 сек, или в момент 5,1 сек, или где-то посредине. Наша задача вычислить скорость точно через 5 сек, а этого мы пока не сделали. Придется улучшить точность и взять теперь на тысячную долю больше 5 сек, т. е. момент 5,001 сек. Полное расстояние, пройденное за это время, составляет

Следовательно, в последнюю тысячную долю секунды шарик проходит 0,050005 м, и если разделить это число на 0,001 сек, то получим скорость 50,005 м/сек. Это уже очень близко, но все же еще не точно. Однако теперь уже ясно, как поступить, чтобы найти скорость точно. Удобнее решать эту задачу в несколько более общем виде. Пусть требуется найти скорость в некоторый момент времени t0 (например, 5 сек). Расстояние, которое пройдено к моменту t0 (назовем его s0), будет 5t02 (в нашем случае 125 м). Чтобы определить расстояние, мы задавали вопрос: где окажется тело спустя время t0+(небольшой добавок), или t0+ε? Новое положение тела будет 5(t0+ε)2=5t20+10t0ε+5ε2. (Это расстояние больше того расстояния, которое шарик прошел за t0 сек, т. е. больше 5t02). Назовем это расстояние s0+(небольшой добавок), или s0+x. Если теперь вычесть из него расстояние, пройденное к моменту t0, то получим х — то дополнительное расстояние, которое шарик прошел за добавочное время ε, т. е. x=10t0ε+5ε2. Так что в первом приближении скорость будет равна

(8.4)

Теперь мы уже знаем, что нужно делать, чтобы получить скорость точно в момент t0: нужно брать отрезок ε все меньше и меньше, т. е. устремлять его к нулю. Таким путем из уравнения (8.4) получим

В нашей задаче t0=5 сек, следовательно, скорость равна у=10·5=50 м/сек. Это и есть нужный ответ. Раньше, когда ε бралось равным 0,1 и 0,001 сек, получалась несколько большая величина, чем 50 м/сек, но теперь мы видим, что в действительности она в точности равна 50 м/сек.

<p><strong>§ 3. Скорость как производная</strong></p>

Процедура, которую мы только что выполнили, настолько часто встречается в математике, что для величин ε и x было придумано специальное обозначение: ε обозначается как Δt, а х — как Δs. Величина Δt означает «небольшой добавок к t», причем подразумевается, что этот добавок можно делать меньше. Значок Δ ни в коем случае не означает умножение на какую-то величину, точно так же как sinθ не означает s·i·n·θ. Это просто некоторый добавок ко времени, причем значок Δ напоминает нам о его особом характере. Ну, а если Δ не множитель, то его нельзя сократить в отношении Δst. Это все равно, что в выражении sinθ/sin2θ сократить все буквы и получить 1/2. В этих новых обозначениях скорость равна пределу отношения Δst при Δt, стремящемся к нулю, т. е.

(8.5)

Это по существу формула (8.3), но теперь яснее видно, что здесь все изменяется, а, кроме того, она напоминает, какие именно величины изменяются.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука