IS THERE ANY neurological evidence for the ideas discussed so far? Recall that many neurons in a monkey’s frontal lobe (in the same region that appears to have become Broca’s area in us) fire when the animal performs a highly specific action like reaching for a peanut, and that a subset of these neurons also fires when the monkey watches another monkey grab a peanut. To do this, the neuron (by which I really mean “the network of which the neuron is a part”) has to compute the abstract similarity between the command signals specifying muscle contraction sequences and the visual appearance of peanut reaching seen from the other monkey’s vantage point. So the neuron is effectively reading the other individual’s intention and could, in theory, also understand a ritualized gesture that resembles the real action. It struck me that the
The bouba-kiki effect requires a built-in translation between visual appearance, sound representation in the auditory cortex, and sequences of muscle twitches in Broca’s area. Performing this translation almost certainly involves the activation of circuits with mirror-neuron-like properties, mapping one dimension onto another. The inferior parietal lobule (IPL), rich in mirror neurons, is ideally suited for this role. Perhaps the IPL serves as a facilitator for all such types of abstraction. I emphasize, again, that these three features (visual shape, sound inflections, and lip and tongue contour) have absolutely nothing in common except the abstract property of, say, jaggedness or roundness. So what we are seeing here is the rudiments—and perhaps relics of the origins—of the process called abstraction that we humans excel at, namely, the ability to extract the common denominator between entities that are otherwise utterly dissimilar. From being able to extract the jaggedness of the broken glass shape and the sound
I HAVE ARGUED, so far, that the bouba-kiki effect may have fueled the emergence of protowords and a rudimentary lexicon. This was an important step, but language isn’t just words. There are two other important aspects to consider: syntax and semantics. How are these represented in the brain and how did they evolve? The fact that these two functions are at least partially autonomous is well illustrated by Broca’s and Wernicke’s aphasias. As we have seen, a patient with the latter syndrome produces elaborate, smoothly articulated, grammatically flawless sentences that convey no meaning whatsoever. The Chomskian “syntax box” in the intact Broca’s area goes “open loop” and produces well-formed sentences, but without Wernicke’s area to inform it with cultivated content, the sentences are gibberish. It’s as though Broca’s area on its own can juggle the words with the correct rules of grammar—just like a computer program might—without any awareness of meaning. (Whether it is capable of more complex rules such as recursion remains to be seen; it’s something we are currently studying.)
We’ll come back to syntax, but first let’s look at semantics (again, roughly speaking, the meaning of a sentence). What exactly is meaning? It’s a word that conceals vast depths of ignorance. Although we know that Wernicke’s area and parts of the temporo-parieto-occipital (TPO) junction, including the angular gyrus (Figure 6.2), are critically involved, we have no idea how neurons in these areas actually do their job. Indeed, the manner in which neural circuitry embodies meaning is one of the great unsolved mysteries of neuroscience. But if you allow that abstraction is an important step in the genesis of meaning, then our bouba-kiki example might once again provide the clue. As already noted, the sound