Читаем The Science of Interstellar полностью

For the discovery of evidence for dark matter in our universe and the current search for dark matter, I recommend a highly readable book, The Cosmic Cocktail: Three Parts Dark Matter (Freeze 2014), by one of the leading researchers in this quest, Katherine Freeze.

For the anomalous acceleration of the universe’s expansion and the dark energy that presumably causes it, I recommend the last chapter of The Cosmic Cocktail (Freeze 2014) and also The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality (Panek 2011).

Chapter 25. The Professor’s Equation

The ideas that Newton’s gravitational constant G might change from place to place and time to time, and might be controlled by some sort of nongravitational field, were hot topics in the Princeton University physics department when I was a PhD student there in the early 1960s. These ideas had been proposed by Princeton’s Professor Robert H. Dicke and his graduate student Carl Brans in connection with their “Brans-Dicke theory of gravity” (Chapter 8 of Was Einstein Right? [Will 1993]), an interesting alternative to Einstein’s general relativity. For a brief personal memoir about this, see “Varying Newton’s Constant: A Personal History of Scalar-Tensor Theories” in Einstein Online (Brans 2010). The Brans-Dicke theory has motivated a number of experiments that searched for varying G, but no convincing variations were ever found; see, for example, Chapter 9 of Was Einstein Right? (Will 1993). These ideas and experiments motivated my interpretation of some of Interstellar’s gravitational anomalies and how to control them: bulk fields control the strength of G and make it vary.

The Professor’s equation, shown on his blackboard in Figure 25.6, builds on these ideas. It also incorporates Einstein’s relativistic laws (general relativity), extended into the bulk’s fifth dimension, which are laid out in a technical review article by Roy Maartens and Koyama Kazuya (Maartens and Kazuya 2010), and it incorporates a branch of mathematics called the “calculus of variations”; see, for example, http://en.wikipedia.org/wiki/Calculus_of_variations. For a few technical details about the Professor’s equation, see the appendix Some Technical Notes.

Chapter 26. Singularities and Quantum Gravity

For a first foray into quantum fluctuations and quantum physics more generally, I recommend The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics (Davies and Brown 1986). I don’t know any articles or books for nonphysicists about the quantum behavior of human-sized objects such as LIGO’s mirrors; at a technical level, I discuss this in the second half of my third Pauli lecture (the one listed first) at http://www.multimedia.ethz.ch/speakers/pauli/2011. In John Wheeler’s autobiography, he discusses how he came up with the idea of quantum foam (Chapter 11 of Geons, Black Holes and Quantum Foam: A Life in Physics [Wheeler and Ford 1998]).

In Chapter 11 of Black Holes & Time Warps (Thorne 1994) I discuss what was known in 1994 about the interiors of black holes, and how we came to know it—including the BKL singularity and its dynamics; quantum gravity’s control of the singularity’s core and its connection to quantum foam; and the infalling singularity (mass-inflation singularity), which had only recently been discovered by Erik Poisson and Werner Israel (Poisson and Israel 1990) and was not yet fully understood. The upflying singularity was discovered so recently that there is not yet any detailed discussion of it for nonphysicists; the technical discovery article is Marolf and Ori (2013) by Donald Marolf and Amos Ori. Matthew Choptuik’s discovery that tiny, transient naked singularities are possible was announced and explained in his technical article (Choptuik 1993).

Chapter 27. The Volcano’s Rim

The volcano-like surface that underlies much of this chapter (Figures 27.3, 27.5, and 27.9) can be described with elementary physics equations, as can the Endurance’s trajectory, the trajectory’s instability on the rim, and the Endurance’s launch toward Miller’s planet. See the appendix Some Technical Notes.

Chapter 28. Into Gargantua
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука