There are no up-to-date books about gravitational waves for the general reader, but I do recommend Einstein’s Unfinished Symphony: Listening to the Sounds of Space-Time (Bartusiak 2000), which is not extremely out of date. For the history of research on gravitational waves from Einstein onward, see Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves (Kennefick 2007).
Chapter 17. Miller’s PlanetIn this chapter I make a large number of claims about Miller’s planet: its orbit, its rotation (it always keeps the same face toward Gargantua except for rocking), Gargantua’s tidal forces that deform it and make it rock; and Gargantua’s whirl of space that it experiences and how the whirl influences inertia, centrifugal forces, and the speed-of-light speed limit. These claims are all supported by Einstein’s relativistic laws of physics, his general relativity. I don’t know of any books or articles or lectures for nonspecialists that discuss and explain these things, for a planet orbiting close to a spinning black hole, except my Chapter 17. Readers at the advanced undergraduate level may try to check my claims using concepts and equations in Hartle’s textbook, Gravity: An Introduction to Einstein’s General Relativity (Hartle 2003).
The questions I raise in the section “Past History of Miller’s Planet” do not require much relativistic physics. They can be answered almost entirely with Newton’s laws of physics, and the best places to seek relevant information are books and websites that deal with geophysics or the physics of planets and their moons.
Chapter 18. Gargantua’s VibrationsFor a description of Bill Press’s discovery that black holes can vibrate and Saul Teukolsky’s deduction of the equations that govern those vibrations, see pp. 295–299 of Black Holes & Time Warps (Thorne 1994). The technical article about black-hole vibrations and their ringdown that underlies both Figure 18.1 and Romilly’s data set is Yang et al. (2013) by Huan Yang, Aaron Zimmerman, and their colleagues.
Chapter 21. The Fourth and Fifth DimensionsFor more detail on the unification of space and time, see pp. 73–79 of Black Holes & Time Warps (Thorne 1994). For the superstring breakthrough by John Schwarz and Michael Green and how that forced physicists to embrace a bulk with extra dimensions, see The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (Greene 2003).
Chapter 22. Bulk BeingsFor a highly rated, animated movie of Edwin A. Abbott’s Flatland (Abbott 1884), see Flatland: The Film (Ehlinger 2007). For extensive discussions of the mathematics underlying Flatland and the story’s connections to nineteenth-century English society, see The Annotated Flatland: A Romance of Many Dimensions (Stewart 2002). For visual insights into the fourth space dimension, see The Visual Guide to Extra Dimensions, Volume 1: Visualizing the Fourth Dimension, Higher-Dimensional Polytopes, and Curved Hypersurfaces (McMullen 2008).
Chapter 23. Confining GravityFor much of the content of this chapter, I recommend Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions (Randall 2006). This is a thorough discussion of modern physicists’ ideas and predictions about the bulk and its extra dimensions, written by Lisa Randall who, with Raman Sundrum, discovered that AdS warping can confine gravity near our brane (Figures 23.4 and 23.6). The idea of an AdS layer and sandwich, which I rediscovered, was first proposed and discussed in a technical paper by Ruth Gregory, Valery A. Rubakov, and Sergei M. Sibiryakov (Gregory, Rubakov, and Sibiryakov 2000), and the AdS sandwich was shown to be unstable in a technical paper by Edward Witten (Witten 2000).
Chapter 24. Gravitational AnomaliesFor the history of the anomalous precession of Mercury’s orbit and the search for the planet Vulcan, I recommend a scholarly treatise by science historian N. T. Roseveare, Mercury’s Perihelion from Le Verriere to Einstein (Roseveare 1982), and also the more readable but less comprehensive account by astronomers Richard Baum and William Sheehan, In Search of the Planet Vulcan: The Ghost in Newton’s Clockwork Universe (Baum and Sheehan 1997).