In my extrapolation, the Professor can think of just three ways that something in the bulk could produce these anomalies, and the first two he quickly rejects:
1. Some object in the bulk—perhaps even a living object, a bulk being—might come near our brane but not pass through it (upper right of Figure 25.3). The object’s gravity reaches out through all the bulk’s dimensions and so could reach into our brane. However, the AdS layer surrounding our brane (Chapter 23) would drive the object’s tidal tendex lines parallel to our brane, allowing only a minuscule portion to reach our brane. So the Professor rejects this.
2. A bulk object, passing through our brane, could produce tidal gravity that changes as the bulk object moves (middle right of Figure 25.3). However, in my extrapolation most of the patterns of changing gravity that the Professor’s team observed don’t fit this explanation. The tendex lines tend to be more diffuse than those from a localized object. Some tidal anomalies might be from localized objects, but most must be something else.
3. Bulk fields passing through our brane could produce the changing tidal gravity (left side of Figure 25.3). This, the Professor concludes in my extrapolation, is the most likely explanation for most of the anomalies.
What is a “bulk field”? Physicists use the word
A bulk field is a collection of force lines that resides in the five-dimensional bulk. What kind of force lines, the Professor doesn’t know, but he speculates; see below. Figure 25.3 shows a bulk field (dashed purple lines) passing through our brane. This bulk field generates tidal gravity in our brane (red and blue tendex lines). As the bulk field changes, its tidal gravity changes, resulting (the Professor thinks) in most of the observed anomalies.
But that isn’t the only role of bulk fields, he suspects—in my extrapolation. They may also control the strength of the gravity produced by objects living in our brane, such as a rock or planet.
The gravity of each little bit of matter in our brane is governed, to high accuracy, by Newton’s inverse square law (Chapters 2 and 23): its gravitational pull is embodied in the formula
In Einstein’s more accurate, relativistic version of the gravitational laws, the strength of gravity, and the strength of all the warping of space and time produced by matter, are also proportional to this
If there is no bulk—if the only thing that exists is our four-dimensional universe—then Einstein’s relativistic laws say that
But if the bulk
The strength of the Earth’s gravitational pull varies slightly from place to place due to the varying density of the rocks, oil, oceans, and atmosphere. Earth-orbiting satellites have mapped this varying strength. As of 2014 the most accurate map is from the European Space Agency’s satellite GOCE[41] (top half of Figure 25.4). In 2014, the Earth’s gravity is weakest in southern India (blue spot) and strongest in Iceland and Indonesia (red spots).
In my extrapolation, this map did not change noticeably until anomalies started appearing. Then one day, quite suddenly, the Earth’s gravitational pull in North America weakened a bit, and in South Africa it strengthened (bottom half of Figure 25.4).