Suppose evolution creates a pathogen that destroys chloroplasts, as speculated by Elliot Meyerowitz at the end of the last chapter. Photosynthesis ends, not all at once, but gradually as plants die out. O2 is no longer being created, but it is still being destroyed by breathing, burning, and decay—primarily decay, it turns out. Fortunately for the remaining humans, there is not enough decaying plant life on the Earth’s surface to swallow up all the O2.
Most of the decay will be finished after thirty years, and only about 1 percent of the O2 will be used up. There is still plenty for Cooper’s children and grandchildren to breathe, if they can find anything to eat.
To make everyone’s breathing uncomfortable and induce drowsiness, ten times more atmospheric O2 would have to be converted into CO2; and to kill most everyone by CO2 poisoning, an additional five times more would have to be converted, a factor of fifty in all. I have not found a plausible mechanism for this.
So is Professor Brand wrong? (Even theoretical physicists can make mistakes. Especially theoretical physicists. I know; I am one.) Probably yes, he is wrong, but conceivably no. The Professor
There is undecayed organic material on the ocean bottoms as well as on land. Geophysicists estimate that the amount on ocean bottoms is about one-twentieth that on land.
Now, once every many thousand years, an instability triggers the ocean to turn over. Water from the surface sinks to the bottom and drives bottom water to the surface. It is conceivable that in Cooper’s era there is such an overturn so vigorous that the upwelling bottom water brings with itself most of the ocean bottoms’ organic material. Suddenly exposed to the atmosphere, this material could decay, converting atmospheric O2 into lethal amounts of CO2.
Conceivable, yes. But highly improbable on two counts: highly unlikely that there is 1000 times more undecayed ocean-bottom organic material than geophysicists think, and highly unlikely that a sufficiently vigorous oceanic overturn will occur.[25]
Nevertheless, in
13
Interstellar Travel
Professor Brand tells Cooper, in their first meeting, that the Lazarus missions have been sent out to search for new homes for humanity. Cooper responds, “There’s no planet in our solar system that can support life, and it’d take a thousand years to reach the nearest star. That doesn’t even qualify as futile. Where did you send them, Professor?”
The worse-than-futile challenge, if you don’t have a wormhole, is obvious when you realize just how far it is to the nearest stars (Figure 13.1).
The nearest star (other than our Sun) thought to have a habitable planet is Tau Ceti, 11.9 light-years from Earth, so traveling at light speed you would need 11.9 years to reach it. If there are any habitable planets closer than that, they can’t be much closer.
To get some sense of just how far Tau Ceti
The very nearest star other than the Sun is Proxima Centauri, 4.24 light-years from Earth, but there is no evidence it has habitable planets. With Tau Ceti’s distance imagined as New York to Perth, then Proxima Centauri’s is like New York to Berlin. It’s not a lot closer than Tau Ceti!