Astrophysicists have carried out simulations of the simultaneous orbital motions of millions of stars around a gigantic black hole like Gargantua. Slingshots gradually change all the orbits and thereby change the density of stars (how many stars there are in some chosen volume). The star density near Gargantua does not go down; it grows. And the density of asteroids and comets will also grow. Random bombardment by asteroids and comets will become more frequent, not less frequent. The environment near Gargantua will become more dangerous for individual life forms, including humans, promoting faster evolution if enough individuals survive.
With Gargantua and its dangerous environment under our belts, let’s make a brief change of direction: to Earth and our solar system; to disaster on Earth and the extreme challenge of escaping disaster via interstellar travel.
III
DISASTER ON EARTH
11
Blight
In 2007, when Jonathan (Jonah) Nolan joined
But Lynda Obst, Jonah, and I worried a bit about the scientific plausibility of Cooper’s world, as envisioned by Jonah: How could human civilization decline so far, yet seem so normal in many respects? And is it scientifically possible that a blight could wipe out all edible crops?
I don’t know much about blight, so we turned to experts for advice. I organized a dinner at the Caltech faculty club, the Athenaeum, on July 8, 2008. Great food. Superb wine. Jonah, Lynda, me, and four Caltech biologists with the right mixture of expertise: Elliot Meyerowitz, an expert on plants; Jared Leadbetter, an expert on the diverse microbes that degrade plants; Mel Simon, an expert on the cells that make up plants and how they are affected by microbes; and David Baltimore, a Nobel laureate with a broad perspective on all of biology. (Caltech is a wonderful place. Named the top university in the world by the
As dinner began I placed a microphone at the center of our round table and recorded our two-and-a-half-hour, free-wheeling conversation. This chapter is based on that recording, but I’ve paraphrased what people said—and they checked and approved my paraphrasing.
Our final consensus, easily reached, is that Cooper’s world is scientifically possible,
Over wine and hors d’oevres, Jonah described his vision for Cooper’s world (Figure 11.1): Some combination of catastrophes has reduced the population of North America tenfold or more, and similarly on all other continents. We have become a largely agrarian society, struggling to feed and shelter ourselves. But ours is not a dystopia. Life is still tolerable and in some ways pleasant, with little amenities such as baseball continuing. However, we no longer think big. We no longer aspire to great things. We aspire to little more than just keeping life going.
Most of us think the catastrophes are finished, that we humans are securing ourselves in this new world and things may start improving. But in reality the blight is so lethal, and leaps so quickly from crop to crop, that the human race is doomed within the lifetime of Cooper’s grandchildren.
What kind of catastrophes could have produced Cooper’s world? Our biologist experts offered a number of possible, but improbable, answers. Here are several: