To lessen the landing weight, a lunar surface rendezvous had been proposed. For that an unmanned tanker vehicle would be sent first – but then the problem was that the manned lander must touch down near enough for the astronauts to transfer the tanker’s fuel. That in turn required that the final landing would have to be controlled by the onboard astronauts. But how would they be able to see the surface from the pointed top of the rocket, with their sloping windows looking skywards? Mirrors, periscopes, TV and even hanging porches were proposed, and a lot of time was wasted on this concept until it was finally agreed that it would not work. It was also felt that developing a rocket as large as Nova would take far too much time.
Assembling rockets and spacecraft in either Earth orbit or lunar orbit were repeatedly proposed as solutions, because this could be done by multiple launches of one or more of seven alternative variations of von Braun’s proposed Saturns. But von Braun himself was still describing any rendezvous proposals as “premature” at meetings in February 1962.
John Houbolt, assistant chief of the Dynamics Load Division at the Langley Research Center, had been arguing the case for LOR, as lunar orbit rendezvous soon became known, quite passionately since 1960. He maintained that if a simple spacecraft could be dropped off to land two astronauts on the Moon and then bring them back to the parent craft waiting in lunar orbit, enormous weight savings would be achieved. It would no longer be necessary to take the heavy Apollo craft, with its heatshield and fuel for the return flight to Earth, down to the lunar surface. Lowering all that weight and lifting it off again consumed many tons of propellant which could all be saved.
But the disadvantages – that such a lightweight ferry could place only a small payload on the Moon, and, worst of all, if its lift-off were less than perfect it would miss its rendezvous with the parent craft and doom the astronauts to a slow death – meant that this option was not seriously considered.
By contrast, a missed rendezvous in Earth orbit would merely mean a failed mission, with the astronauts being brought safely home. So Houbolt’s arguments that LOR was much simpler than EOR, and that his plan meant taking 7000 pounds (3,200 kg) instead of 150,000 pounds (68,000 kg) down to the lunar surface, were at first discounted.
Slowly, however, the Manned Spacecraft Center at Houston, led by Brainerd Holmes, who was brought in to head the programme after successfully completing the then RCA’s Ballistic Missile Early Warning System (during which air and defence correspondents like myself had been immensely impressed by his abilities), were won over to LOR. Its over-riding advantage was that only one Saturn 5 rocket would be needed for a complete moonlanding mission instead of two for EOR, and the savings in time and cost were enormous. It soon became clear that it was the only way in which a moonlanding could be accomplished within the decade.
But the Marshall Space Flight Center at Huntsville stubbornly adhered to its view that EOR was the way to go. Brainerd Holmes decided that von Braun must be won over. A shrewd negotiator, he realised that LOR would mean a substantial loss of work for the rocket centre, so he arranged for his deputy, Joseph Shea, to invite von Braun to Washington to point out to him that, if EOR were chosen, Houston would be overloaded with work. “It just seems natural to Brainerd and me that you guys ought to start getting involved in the lunar base and the roving vehicle, and some of the other spacecraft stuff.”
NASA’s historians say that Wernher, who was known to have wanted for a long time to get into spacecraft design and not be confined to launch rockets, “kind of tucked that in the back of his mind and went to Huntsville”.
Two months later came the conversion. At an all-day conference in June, when a final decision was desperately overdue, all the presentations by von Braun’s lieutenants still favoured EOR. Their German leader sat listening and making notes for six hours. Then he got up and made a 15-minute speech which shocked his staff but finally settled the issue. “Our general conclusion,” he said, “is that all four modes [under discussion for reaching the Moon] are technically feasible and could be implemented with enough time and money.” He then listed what he called “Marshall’s preferences”: 1) lunar orbit rendezvous; 2) Earth orbit rendezvous, using the refuelling technique; 3) direct flight with a Saturn 5, using a lightweight spacecraft and high energy propellants; and 4) direct flight with a Nova or Saturn C8 rocket.