I remember the guys in my squadron in Germany commenting that the Mercury capsule looked more like a diving bell than an aircraft. The pilot would lie flat on his back on a form-fitting couch. But even if the Mercury spacecraft wasn’t as fiercely beautiful as the supersonic fighters we flew, it was designed to “fly” higher and faster than any jet plane, in an entirely new environment, space. There was no need for swept wings to provide lift, or a raked tail for control. The velocity imparted by the booster would lift the Mercury spacecraft far above the atmosphere.
Which way to the moon?
It was only 18 days after Gagarin became the first human in orbit that President Kennedy announced, in May 1961, that the United States proposed to land a man on the Moon and bring him safely home before the end of that decade. He said that they would do it, not because it was easy, but because it was “hard”!
Too right, thought NASA’s top managers! At that time the youthful National Aeronautics and Space Administration had only vague theories as to how such a landing could be accomplished. Despite the confident 10-year programme which had so impressed me and many others, their scientists and technicians had actually achieved only one 15-minute manned space log; and while Project Apollo had been announced 10 months earlier, its stated aim was merely to fly men around the Moon – “a circumlunar mission” – without landing.
The President’s “deadline” led to some rather desperate planning. Sending men to the Moon was relatively easy; the difficult part was bringing them back again. Two Lockheed engineers proposed that an astronaut should be sent on a one-way trip and left there, with food, oxygen and other supplies being rocketed to him for several years while methods and equipment were devised for bringing him back. This solution was still being advocated in June 1962 by Bell Aerospace engineers, who pointed out that while he was waiting the astronaut could perform valuable scientific work. It would be a hazardous mission, they conceded, but “it would be cheaper, faster, and perhaps the only way to beat Russia.” NASA’s historians say there is no evidence that their administrators ever took such a plan seriously; but they did listen to it, and it is recorded.
NASA had inherited from the US Air Force a general assumption that “direct ascent” was the way to get to the Moon. As explained earlier, the USAF had decided some years before that a manned base on the Moon was desirable for defence reasons, and had been working on a plan for a lunar expedition called Lunex since 1958. They thought they could send three men there and back in a huge three-stage rocket called Nova, providing an initial thrust of 12 million lb – almost twice as big as the projected Saturn 5.
Nova was the largest of a series of rocket designs proposed by Dr Wernher von Braun and his team of German rocket engineers. Von Braun had always supported direct approach as the best way to get men to the Moon. Although rendezvous and docking techniques in Earth or lunar orbit were much discussed, practical tests were a long way off, so no one was sure that they would work. The weakness of direct approach, on the other hand, was that a huge weight – the whole third stage of the rocket – had to be slowed down for the lunar landing, still carrying enough propellant to re-launch part of itself and its crew on the return journey to the Earth.