The unmanned craft would be powered by a revolutionary engine which has been called the Star Trek propulsion system. ESA’s Smart 1 spacecraft forms part of its “Small Missions for Advanced Research in Technology” (SMART) project, the purpose of which is to test new technologies that will eventually be used on bigger projects.
The European Space Agency (ESA) Smart 1 spacecraft was launched on 4 September 2003 from French Guiana. It carried a British-built sensor to analyse the lunar surface and scientists hope it will answer questions about how the moon was created. The mission could also confirm the suspected existence of water beneath the lunar surface.
The key to the mission is a new development known as an ion engine. This “Star Trek propulsion system” is much smaller than other spacecraft engines and uses solar panels to charge electrically heavy gas atoms, which propel the craft forward as they are pushed away at high speed.
The ion engine begins very slowly, its thrust barely as strong as the force a postcard would produce as it falls through the air. But over long periods of time it can generate much more power and produce high speeds.
Scientists hope it could one day allow manned missions to faraway stars. Guiseppe Racca, the Smart 1 project manager at ESA, said:
“This engine opens up a whole new era of exploration.”
The one-square-metre craft will take 18 months to reach the moon and will then swoop to within 300km of the lunar surface, using its array of sensors and cameras to analyse the lunar surface.
Scientists hope the mission will finally end a row over where the moon came from. Analysing the lunar surface should allow them to tell if the moon is, as they suspect, the remnant of a massive collision between a young Earth and another planet.
If this theory is correct, the moon should contain less iron than Earth, something Smart 1’s D-CIXS sensor developed at the Rutherford Appleton Laboratory in Hampshire can spot.
Bernard Foing, a scientist on the project at ESA, said:
“We’ll be able to make the first comprehensive inventory of chemical elements in the lunar surface. We’ll also carry a multi-colour camera, so we will get some new views of the moon.
“As the moon is effectively the daughter of the Earth, we should also get some indications of the early conditions here.”
While conventional rocket engines use vast amounts of fuel, and can only run for short periods of time, ion engines use very little propellant. NASA has been running an experimental ion engine continuously for five years.