Optimization problems arise naturally, and were already well known to mathematicians in antiquity. It seems they were also known and understood by Queen Dido, who when she came to North Africa was granted as much land as she could enclose within the hide of a cow. She cut it into thin strips, out of which she made a long string. Her task was then to enclose the maximum area of land within it. The solution to this problem of maximizing the area within a figure of given perimeter is a circle. However, Dido’s territory was to adjoin the coast, which did not count as part of the perimeter. For a straight coastline the solution to this problem is a semicircle, and this was said to be the origin of the territory of Carthage. A rich body of mathematical and physical theory has developed out of similar problems. It cannot explain why the universe is, but given that the universe does exist it goes a long way to explain why it is as it is and not otherwise.
In early modern times, Pierre de Fermat (of the famous last theorem) developed a particularly fruitful idea due to Hero of Alexandria, who had sought the path of a light ray that passes from one point to another and is reflected by a flat surface on its way. Hero solved this problem by assuming that light travels at a constant speed and chooses the path that
In 1696 John Bernoulli posed the famous ‘brachistochrone’ (shortesttime) problem. A bead, starting from rest, slides without friction under gravity on a curve joining two points at different heights. The bead’s speed at any instant is determined by how far it has descended. What is the form of the curve for which the time of descent between the two points is shortest? Newton solved the problem overnight, and submitted his solution anonymously, but Bernoulli, recognizing the masterly solution, commented that Newton was revealed ‘as is the lion by the claw print’. The solution is the cycloid, the curve traced by a point on the rim of a rolling wheel.
Soon there developed the idea that the laws of motion – and thus the behaviour of the entire universe – could be explained by an optimization principle. Leibniz, in particular, was impressed by Fermat’s principle and was always looking for a reason why one thing should happen rather than another. This was an application of his principle of sufficient reason: there must be a cause for every effect. Leibniz famously asked why, among all possible worlds, just one should be realized. He suggested, rather loosely, that God – the supremely rational being – could have no alternative but to create the best among all possible worlds. For this he was satirized as Dr Pangloss in Voltaire’s
Inspired by such ideas, the French mathematician and astronomer Pierre Maupertuis (another victim of Voltaire’s satire), advanced the