Читаем The End of Time: The Next Revolution in Physics полностью

The same thing can be done for any number of bodies. Their relative configurations will correspond to different points along a curve in the corresponding Platonia. To lay out ‘marks of equal intervals of time’ on it, we have to go through the same procedure with the computer, telling it to find a framework and a time in which the bodies do satisfy Newton’s laws. Only two facts about this process are significant. First, because all the bodies interact, all their positions must be used if the ‘time marks’ are to be found. To tell the time by such a clock, we need to know where all its bodies are. Time cannot be deduced from a small number of them, unlike inertial time; the clock has as many hands as the system has bodies. Second, no matter how many bodies there are in a system, the data in just two snapshots are never enough to find the spaghetti sculpture in absolute space and construct a clock. We always need at least some data from a third snapshot. As we have seen, this ‘two-and-a-bit puzzle’ is the main – indeed the only – evidence that absolute space and not Platonia is the arena of the universe.

You might think that this is all far removed from practical considerations. It is true that scientists have learned to make extremely accurate clocks using atomic phenomena. But this is a comparatively recent development. Before then, astronomers faced a tricky situation, which is worth recounting.

For millennia, the Earth’s rotation provided a clock sufficiently reliable and accurate for all astronomical purposes. It was unique – the astronomers had access to no other comparable clock. However, about a hundred years ago, astronomical observations had become so accurate that deficiencies in it began to show up. Tidal forces of the Moon acting on the Earth sometimes give rise to unpredictable changes of the mass distribution in its interior. As my accident in Oxford demonstrated, such changes in a rotating body must change its rotation rate. The clock was beginning to fail the astronomers’ growing needs for greater accuracy. Such crises highlight fundamental facts. What could the astronomers do?

They managed to find a natural clock more accurate than the Earth: the solar system. To make this into a clock, they assumed that Newton’s laws governed it. (After the discovery of general relativity, small corrections had to be made to them, but this did not change the basic idea.) However, the astronomers had no direct access to any measure of time. Instead, they had to assume the existence of a time measure for which the laws were true. Making this assumption and using the laws, they could then deduce how all the dynamically significant bodies in the solar system should behave. Although they had no access to it, they then knew where the various bodies should be at different instants of the assumed time. Monitoring one body – the Moon, in fact – they could check when it reached positions predicted in the assumed time and verify that the other bodies in the solar system reached the positions predicted for them at the corresponding times. The astronomers were thus forced into the exercise just described, and they used the Moon as the hand of a clock formed by the solar system.

They originally called the time defined in this manner Newtonian time. It is now called ephemeris time. (An ephemeris is a publication which gives positions of celestial objects at given times.) For a decade or more it was actually the official time standard for civil and astronomical purposes. More recently, atomic time, which relies on quantum effects, has been adopted. There are several important things about ephemeris time. First, it is unthinkable without the laws that govern the solar system. Second, it is a property of the complete solar system (because all its bodies interact, all co-determine one another’s positions). Third, it exists only because the solar system is well isolated as a dynamical system from the rest of the universe.

Ephemeris time may be called the unique simplifier. This is an important idea. If, as Mach argued, only configurations exist and there is no invisible substance of time, what is it that we call time? When we hold the configurations apart in time and put a duration between them, this something we put there is a kind of imagined space, a fourth dimension. The spacing is chosen so that the happenings of the world unfold in accordance with simple laws (Newton’s or Einstein’s). This is a consequence of the desire to represent things in space and time, and our inability hitherto to find laws of a simple form in any other framework.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука