Moreover, the paths are still only ‘seeds’. The finding of the full rich structures which tell us so insistently that time exists and flows must result from entanglement with the host of the remaining quantum variables that constitute the expanses of Platonia. When discussing alpha-particle tracks, I emphasized that Mott employed a special device to concentrate the wave function on time capsules. Considered purely in terms of the stationary Schrödinger equation, this was artificial. This is what created the static alpha-particle tracks and such a strong sense of time and history out of the ‘seed’ of a spherical wave pattern.
If my proposal is along the right lines, there must be some natural and plausible mechanism within static quantum cosmology which performs this task. Platonia at large must force it to happen. As I have already said, I see the cause in the rooted asymmetry of contingent things. Platonia is necessarily skew. It is easy to imagine that the cone of Figure 55 ‘funnels entanglement outwards’, much as a trumpeter blows air from a bugle. I deliberately chose this last simile. The bugle does create a nice image of what I have in mind, but it also creates hot air. There are no hard mathematical proofs to support my idea, but I hope you are now persuaded that at least the arguments for a timeless universe are strong. If it nevertheless appears intensely temporal, there must somewhere be a massive reason for the fact. I think it is the asymmetry of being. Being can be more or less. Sitting in the midst of things, we feel ourselves carried forward on the mighty arrow of time. But it is an arrow that does not move. It is simply an arrow that points from the simple to the complex, from less to more, most fundamentally of all from nothing to something. If we could look over our shoulder in Platonia, we should see where this trek began: at the edge of nothing.
Figure 55 Explosion out of the Big Bang and recontraction to the Big Crunch according to present standard cosmology.
A WELL-ORDERED COSMOS?
Let me end the main part of the book with a few comments on structure, and what strikes a theoretical physicist as improbable. If we think that dynamical histories in space and time are the fundamental things in nature, then all statistical reflections on the world lead to great difficulties. Most histories are unutterably boring over all but a minuscule fraction of their length. We can never understand the miracle of the structured world. Things are completely changed if quantum cosmology is really about some well-behaved distribution of a static wave function over Platonia. The configurations at which ψ collects strongly must be special – in some sense they must resonate with all the other configurations that are competing for wave function. Quantum cosmology becomes a kind of beauty contest in eternity. The winners – those that get a high probability density – must be exceptional, like the DNA molecule. This is just the opposite of what classical physics leads us to expect. There, the winners are boring.
When I wrote my book on the history of dynamics, I was exposed to the beautiful poetic notion of the well-ordered cosmos. Intermittent reading of Leibniz had already made me deeply interested in structure, and this was greatly strengthened by my collaboration with Lee Smolin on the Leibnizian idea that the actual universe is more varied than any other conceivable universe. That still remains a mere idea (though Paul Davies was sufficiently intrigued to include a brief account of the idea in his
The single most striking thing about the universe we see around us is its rich structure, which is so difficult to understand on a priori statistical grounds. Until the modern scientific age, all thinkers saw the first task of science as being the direct description and explanation of this structure. This natural impulse is reflected in the Pythagorean notion of the well-ordered cosmos. It was still very strong in both Kepler and Galileo. However, when Newton demonstrated the supreme importance of accelerations in dynamics, the perspective of science changed, for the world at the present instant became the mere consequence of its initial conditions. Instead of asking directly how structure is fashioned, science turned to asking how it is refashioned.