The central conclusion of standard thermodynamics with an external time is that, if the low entropy of the world and its habitual increase are to be explained, the universe must presently be evolving out of a statistically most unlikely state. In systems in which gravity does not act, the unlikely state is generally one that is structured, while the likely state is characterized by a bland uniformity. Gas confined in a finite volume tends quickly to a very uniform state in which it occupies all the available space and all temperature differences are levelled out. This is the equilibrium state. It is vastly more probable than any ordered state because there are so many more ways in which it can be realized microscopically. The situation is much more complicated when gravity comes into play, since there is no well-defined equilibrium state for a gravitating system. Gravity is attractive, so a uniform state is unstable and will tend to break into self-gravitating clumps. This is the exact opposite of a gas.
Currently there is no fully satisfactory thermodynamics of cosmology, mainly because of the way in which gravity acts. But it does seem certain that black holes, which almost certainly exist, have a well-defined entropy associated with them. This was the final and most dramatic outcome of the intensely exciting ‘golden decade’ in the study of black holes that ended with the discovery of black-hole evaporation by Stephen Hawking in 1974. This fascinating story has been told with great verve by Kip Thorne in his
No one has done more than Roger Penrose to highlight this fact. His
It all depends on how a static wave function ‘beds down’ on the starkly asymmetric continent of Platonia. The issue of the correct arena is all-important. The collective intuition of most physicists, wedded to time and honed on translucent structures like absolute space, is forced to see the observed universe as highly improbable. But in Platonia it may appear inevitable. Wave functions have a way of finding special structures: for example, they can create complex molecules like proteins and DNA.
Let it be granted, not unreasonably I think, that the wave function of the universe will be semiclassical with respect to at least some variables in some part of Platonia. Where is it likely to be, and how will the corresponding Hamiltonian ‘light rays’ run? Do they emerge from Alpha? Here, one of the most famous results of classical general relativity may be relevant. Penrose and Hawking showed that its solutions have a remarkable propensity to evolve into a singular state. All that is necessary is for sufficient matter to be concentrated within a certain finite region. After that, as Penrose showed, collapse to a black hole is inevitable. Hawking showed that there is a sense in which the Big Bang itself can be regarded as the time-reverse of the Penrose collapse to a black hole. (Collapse here has nothing to do with quantum-mechanical collapse of the wave function.) Solutions that terminate at one or both ends in singular states are characteristic of general relativity.
What happens in a quantum theory cannot be totally unrelated to the corresponding classical theory. It therefore seems likely that in quantum gravity there will be a semiclassical region near the central ray in Figure 55. The Hamiltonian ‘light rays’ in it may well, reflecting the structure of Platonia, appear to emanate from Alpha, and rise up in a kind of jet which then spreads out and falls back, as in a fountain, returning to small volumes but in a much more irregular state. Alternatively, they may go on for ever, receding ever farther from Alpha. I have described these trajectories as if they were traced in time, but they are only paths.