Читаем The End of Time: The Next Revolution in Physics полностью

This book has been one long, sustained effort to shed redundant concepts. We now are down to two: a static but well-behaved wave function and the configuration space. The latter is Platonia, our pitch. I look at it as a child might – what a lopsided thing it is! However I turn in my mind the notion of ‘thing’, the space of all things constructed according to one rule comes out asymmetric. All the mathematical structures built by physicists to model the world have this inherent asymmetry. One rule creates triangles, but they are all different. No matter how you arrange them, their configuration space falls out oddly. Have another look at Triangle Land (Figures 3 and 4), which is just about the simplest Platonia there can be. And what does it look like? An upturned Matterhorn. Imagine trying to play football on that pitch.

The barest arena in which we can hope to represent appearances is the set of possible things. If we banish things, we banish all the world. So we have kept things and made them the instants of time. As we experience them, they are invariably time capsules. This is the principal contingent fact of existence: the wave function of the universe, playing the great game in timelessness, seeks and finds time capsules. What all-pervasive influence can put such a rooted bias into the game? The explanation seems to scream at us. Platonia is a skewed continent.

My conjecture is this. The Wheeler-DeWitt equation of our universe concentrates any of its well-behaved solutions on time capsules. I suspect the same result would hold for many different equations and configuration spaces. The inherent asymmetry of the configuration space will always ‘funnel’ the wave function onto time capsules.

I could fill up pages with hand-waving arguments for why this should be so, but they would baffle the non-specialist and offend the specialist. I shall attempt only to show that the ‘seeking out’ of time capsules need not depend on time and a special initial condition. Stationary equations may also do the trick. I may also mention that if, as explained in the Notes, the universe can, in accordance with my recent insights, be understood solely in terms of pure structure, so that absolute distance plays no role, it will certainly be possible to make the arguments of the remaining parts of this chapter more precise and convincing.

TIMELESS DESCRIPTIONS OF DYNAMICS

In Part 2, we saw that Newtonian classical histories of the universe can be described in a timeless fashion as ‘shortest’ curves (geodesics) in configuration space. All histories that have the same energy can be described this way. This fact is often helpful, simplifying the solution of problems. In quantum mechanics something similar happens.

Physicists often want to know what will happen if some atomic particle is shot at a target of other particles. One way is to represent it by a ‘cloud’ of wave function – a wave packet – that moves towards the target. As Schrödinger showed, such a packet can be formed from waves corresponding to a relatively small range of momenta and energies, and it moves with a more or less definite velocity. When it reaches the target, it is ‘scattered’ – the wave function flies off in many directions. Physicists use the time-dependent Schrödinger equation to find the probabilities for these various directions. In this picture, the wave packet moves and is in different positions at different times. This is rather like the representation of history in Newtonian physics as an illuminated spot moving along a curve in configuration space.

There is, however, an alternative method. A single static wave covers the whole region – before, at, and after the target – traversed by the wave packet in the first picture. This one wave satisfies the stationary Schrödinger equation and corresponds to a particle with the average momentum and energy of the packet. As far as the target, the static wave is regular and plane, but at the target its pattern gets broken up. The interesting thing is that if we examine the pattern of the disrupted (but still static) wave in the region behind the target, we can deduce from it the probabilities with which the particle will be scattered in different directions in the first picture. I shall not go into details; suffice it to say that the one static wave is a kind of record of all the successive wave-packet positions in the first description. This is closely analogous to the way in classical physics in which the curve in the configuration space is a summary of all positions of the illuminated spot taken to represent the system at different times.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука