We shall stick to phenomena in which the wave crests remain regular. Lines that run at right angles to such wave crests can be defined; they are easy to visualize (Figure 45). Hamilton’s work in the 1820s showed that these lines correspond to the older idea of light rays, and that there are two seemingly quite different ways of explaining the behaviour of light and the functioning of optical instruments. In the older, more primitive way, light is composed of tiny particles (corpuscles) that travel along straight lines in empty space, but are bent in air, water and optical instruments (made of glass). The theory of light corpuscles works because the paths they take, along Kepler’s light rays, coincide with the lines that run at right angles to the wave crests. This is the second of Hamilton’s great discoveries: if light is a wave phenomenon, there are nevertheless many occasions in which it can be conceived as tiny particles that travel along these rays.
This insight led to the distinction between
Geometrical optics shows how theories that explain many phenomena impressively and simply can still give a misleading picture. As my daughter learned on those frosty nights, this had happened in ancient astronomy. Ptolemy’s epicycles gave a beautifully simple and successful theory of planetary motion, but were made redundant when Copernicus made the Earth mobile. Geometrical optics is another classic example of a ‘right yet wrong’ theory. In fact, with its confrontation and reconciliation of seemingly different worlds (particles and waves), it is one long, ongoing saga. It started with Kepler’s optics, continued with the rival optical theories of Newton (particles) and Huygens, Euler, Young and Fresnel (wave theory), and reached a first peak with Hamilton. It burst into life again in 1905 with Einstein’s notion of the light quantum, then went through another remarkable transformation in Schrödinger’s 1926 discovery of wave mechanics. I believe this saga has not yet run its course, as I will explain in the next chapter.
Now we come to Hamilton’s next discovery – the explanation of Fermat’s principle of least time, the idea that did more than anything else to foster the development of the principle of least action.
HISTORY WITHOUT HISTORY
Figure 46 shows the wave crests of a light wave in a medium in which the speed of light is the same in all directions but varies from point to point, causing the wave crests to bend. The speed of light is less where the crests are closer together. Obviously, if some particle wanted to get from
One of the most interesting things about geometrical optics is a connection it establishes with particles in Newtonian mechanics. The characteristic property of a moving particle is that it traces out a path through space. When regular wave patterns are present, wave theory creates similar one-dimensional tracks without any particles being present at all – the tracks of the light rays. Of course, in a strict wave theory the rays are not really ‘there’, but they are present as theoretical constructs. And many phenomena can be explained rather well by assuming that particles really are there. As John Wheeler would say, one has ‘particles without particles’, or even ‘histories without histories’.
Figure 46 The explanation of Fermat’s principle of least time under the conditions of a regular wave pattern, so that geometrical optics holds.