Latent Histories and Wave Packets
SMOOTH WAVES AND CHOPPY SEAS
All interpretations of quantum mechanics face two main issues. First, the theory implies the existence of far more ‘furniture’ in the world than we see. I have suggested that the ‘missing furniture’ is simply other instants of time that we cannot see because we experience only one at a time. The other issue is why our experiences suggest so strongly a macroscopic universe with a unique, almost classical history. In the very process of creating wave mechanics, Schrödinger found a most interesting connection between quantum and classical physics that cast a great deal of light on this problem. The interpretation he based on it was soon seen to be untenable, but it is full of possibilities and continues to play an important role. It is the starting point of other interpretations, including the one I advocate, so I should like to say something about it.
In the 1820s and 1830s, William Rowan Hamilton, whom we have already met, established a fascinating and beautiful connection between the two great paradigms of physical thought of his time – the wave theory of light and the Newtonian dynamics of particles. Cornelius Lanczos, a friend of Einstein and author of the fine book
We have done considerable mountain climbing. Now we are in the rarefied atmosphere of theories of excessive beauty and we are nearing a high plateau on which geometry, optics, mechanics, and wave mechanics meet on common ground. Only concentrated thinking, and a considerable amount of re-creation, will reveal the full beauty of our subject in which
The italics are mine. Lanczos’s account does end with Schrödinger’s discoveries, but I think it can be taken one step further. By the way, do not worry about the call for ‘concentrated thinking’. If you have got this far, you will not fail now.
Hamilton made several separate discoveries, but the most fundamental result is simple and easy to visualize. Two characteristic situations are encountered in wave theory – ‘choppy’ waves, as on a squally sea, and regular wave patterns. Hamilton was studying the connection between Kepler’s early theory of light rays and the more modern wave theory introduced by Young and Fresnel. Hamilton assumed that light passing through lenses took the form of very regular, almost plane waves of one frequency (Figure 45).
In optics, many phenomena can be explained by such waves. To do this, we need to know how the wave crests are bent and how the wave intensity, which is measured by the square of the wave amplitude (Figure 45), varies. In general, when the wave is not very regular, the ways in which the wave crests bend and the amplitude varies are interconnected, and it is not possible to separate their behaviour. However, as the behaviour gets more regular, the amplitude changes less and simultaneously ceases to affect the bending of the wave crests. Hamilton found the equation that governs the disposition of the wave crests in this case. Now known as the
Figure 45 An example of a regular wave pattern, showing wave crests and the lines that run at right angles to them. Such patterns are characterized by two independent quantities – the wavelength and the amplitude (the maximum height of the wave).