Recall the comparison between the scalable and the nonscalable in Chapter 3. Scalability means that there is no headwind to slow you down.
Of course, Mandelbrotian Extremistan can take many shapes. Consider wealth in an extremely concentrated version of Extremistan; there, if you double the wealth, you halve the incidence. The result is quantitatively different from the above example, but it obeys the same logic.
People with a net worth higher than €1 million: 1 in 63
Higher than €2 million: 1 in 125
Higher than €4 million: 1 in 250
Higher than €8 million: 1 in 500
Higher than €16 million: 1 in 1,000
Higher than €32 million: 1 in 2,000
Higher than €320 million: 1 in 20,000
Higher than €640 million: 1 in 40,000
If wealth were Gaussian, we would observe the following divergence away from €1 million.
People with a net worth higher than €1 million: 1 in 63
Higher than €2 million: 1 in 127,000
Higher than €3 million: 1 in 14,000,000,000
Higher than €4 million: 1 in 886,000,000,000,000,000
Higher than €8 million: 1 in 16,000,000,000,000,000,000,000,000,000,000,000
Higher than €16 million: 1 in …
What I want to show with these lists is the qualitative difference in the paradigms. As I have said, the second paradigm is scalable; it has no headwind. Note that another term for the scalable is power laws.
Just knowing that we are in a power-law environment does not tell us much. Why? Because we have to measure the coefficients in real life, which is much harder than with a Gaussian framework. Only the Gaussian yields its properties rather rapidly. The method I propose is a general way of viewing the world rather than a precise solution.
Remember this: the Gaussian-bell curve variations face a headwind that makes probabilities drop at a faster and faster rate as you move away from the mean, while “scalables,” or Mandelbrotian variations, do not have such a restriction. That’s pretty much most of what you need to know.[53]
Let us look more closely at the nature of inequality. In the Gaussian framework, inequality decreases as the deviations get larger—caused by the increase in the rate of decrease. Not so with the scalable: inequality stays the same throughout. The inequality among the superrich is the same as the inequality among the simply rich—it does not slow down.[54]
Consider this effect. Take a random sample of any two people from the U.S. population who jointly earn $1 million per annum. What is the most likely breakdown of their respective incomes? In Mediocristan, the most likely combination is half a million each. In Extremistan, it would be $50,000 and $950,000.
The situation is even more lopsided with book sales. If I told you that two authors sold a total of a million copies of their books, the most likely combination is 993,000 copies sold for one and 7,000 for the other. This is far more likely than that the books each sold 500,000 copies.
Why is this so? The height problem provides a comparison. If I told you that the total height of two people is fourteen feet, you would identify the most likely breakdown as seven feet each, not two feet and twelve feet; not even eight feet and six feet! Persons taller than eight feet are so rare that such a combination would be impossible.
Have you ever heard of the 80/20 rule? It is the common signature of a power law—actually it is how it all started, when Vilfredo Pareto made the observation that 80 percent of the land in Italy was owned by 20 percent of the people. Some use the rule to imply that 80 percent of the work is done by 20 percent of the people. Or that 80 percent worth of effort contributes to only 20 percent of results, and vice versa.
As far as axioms go, this one wasn’t phrased to impress you the most: it could easily be called the 50/01 rule, that is, 50 percent of the work comes from 1 percent of the workers. This formulation makes the world look even more unfair, yet the two formulae are exactly the same. How? Well, if there is inequality, then those who constitute the 20 percent in the 80/20 rule also contribute unequally—only a few of them deliver the lion’s share of the results. This trickles down to about one in a hundred contributing a little more than half the total.