The last ten deutschmark bill, representing Gauss and, to his right, the bell curve of Mediocristan.
The striking irony here is that the last possible object that can be linked to the German currency is precisely such a curve: the reichsmark (as the currency was previously called) went from four per dollar to
Shockingly, the bell curve is used as a risk-measurement tool by those regulators and central bankers who wear dark suits and talk in a boring way about currencies.
The main point of the Gaussian, as I’ve said, is that most observations hover around the mediocre, the average; the odds of a deviation decline faster and faster (exponentially) as you move away from the average. If you must have only one single piece of information, this is the one: the dramatic increase in the speed of decline in the odds as you move away from the center, or the average. Look at the list below for an illustration of this. I am taking an example of a Gaussian quantity, such as height, and simplifying it a bit to make it more illustrative. Assume that the average height (men and women) is 1.67 meters, or 5 feet 7 inches. Consider what I call a
10 centimeters taller than the average (i.e., taller than 1.77 m, or 5 feet 10): 1 in 6.3
20 centimeters taller than the average (i.e., taller than 1.87 m, or 6 feet 2): 1 in 44
30 centimeters taller than the average (i.e., taller than 1.97 m, or 6 feet 6): 1 in 740
40 centimeters taller than the average (i.e., taller than 2.07 m, or 6 feet 9): 1 in 32,000
50 centimeters taller than the average (i.e., taller than 2.17 m, or 7 feet 1): lin 3,500,000
60 centimeters taller than the average (i.e., taller than 2.27 m, or 7 feet 5): 1 in 1,000,000,000
70 centimeters taller than the average (i.e., taller than 2.37 m, or 7 feet 9): 1 in 780,000,000,000
80 centimeters taller than the average (i.e., taller than 2.47 m, or 8 feet 1): 1 in 1,600,000,000,000,000
90 centimeters taller than the average (i.e., taller than 2.57 m, or 8 feet 5): 1 in 8,900,000,000,000,000,000
100 centimeters taller than the average (i.e., taller than 2.67 m, or 8 feet 9): 1 in 130,000,000,000,000,000,000,000
… and,
110 centimeters taller than the average (i.e., taller than 2.77 m, or 9 feet 1): 1 in 36,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.
Note that soon after, I believe, 22 deviations, or 220 centimeters taller than the average, the odds reach a googol, which is 1 with 100 zeroes behind it.
The point of this list is to illustrate the acceleration. Look at the difference in odds between 60 and 70 centimeters taller than average: for a mere increase of four inches, we go from one in 1 billion people to one in 780 billion! As for the jump between 70 and 80 centimeters: an additional 4 inches above the average, we go from one in 780 billion to one in 1.6 million billion![51]
This precipitous decline in the odds of encountering something is what allows you to ignore outliers. Only one curve can deliver this decline, and it is the bell curve (and its nonscalable siblings).
By comparison, look at the odds of being rich in Europe. Assume that wealth there is scalable, i.e., Mandelbrotian. (This is not an accurate description of wealth in Europe; it is simplified to emphasize the logic of scalable distribution.)[52]
People with a net worth higher than €1 million: 1 in 62.5
Higher than €2 million: 1 in 250
Higher than €4 million: 1 in 1,000
Higher than €8 million: 1 in 4,000
Higher than €16 million: 1 in 16,000
Higher than €32 million: 1 in 64,000
Higher than €320 million: 1 in 6,400,000