Не менее интересны примеры распространения вещества при наличии в системе или на контрольной поверхности, отделяющей систему от окружающей среды, скачков интенсиалов типа ВС (рис. 4, в и г), где прямые АВ и CD соответствуют обычному процессу типа АВ (рис. 4, а). В частности, скачки интенсиалов всегда имеют место на поверхностях контакта разнородных тел (вспомним контактные разности электрических потенциалов, давлений, температур и т.д.). Если ансамбль распространяется под влиянием некоторого результирующего взаимодействия и на его пути встречается падение данного интенсиала, то сопряженное с этим интенсиалом вещество выделяет экранированное термическое вещество (рис. 4, в). Если ансамбль распространяется в противоположном направлении, то термическое вещество на поверхности контакта экранируется, поглощается (рис. 4, г). Соответствующие процессы наблюдаются, например, в эффекте Пельтье, в гальваническом элементе и электрическом аккумуляторе и т.д.
Следует отметить, что процессы переноса, изображенные на рис. 4, а и б, в принципиальных своих чертах не отличаются от процессов переноса через скачок интенсиала (рис. 4, в и г). Оба вида процессов в равной мере подчиняются всем основным законам ОТ, включая законы переноса и экранирования. В первом случае процесс переноса рассчитывается по формулам типа (121) и (126), в которые входят градиенты интенсиалов и проводимости. Во втором надо пользоваться уравнениями типа (111) и (116), которые содержат разности интенсиалов и коэффициенты отдачи вещества на поверхности. Скачки интенсиалов, вообще говоря, можно относить к системе или к окружающей среде, но в обоих случаях требуется повышенное внимание, чтобы не ошибиться при использовании первого и второго начал ОТ, особенно когда учитывается влияние ?Э .
Нетрудно сообразить, что процессы поглощения термического вещества суть прямое следствие наличия универсального взаимодействия, без которого они были бы невозможны. Универсальное взаимодействие связывает между собой в ансамбле порции разнородных веществ. Именно поэтому некоторое данное вещество, распространяющееся под действием сопряженного с ним убывающего интенсиала, увлекает за собой остальные вещества, которые благодаря этому приобретают способность преодолевать возрастающие значения сопряженных с ними интенсиалов. Таким образом, утрачивает силу известная идея одностороннего развития мира, вытекающая из принципа возрастания энтропии во всех реальных процессах. Действительность такова, что процессы обратного направления - с убыванием энтропии - встречаются в природе столь же часто, как и прямого, - с возрастанием энтропии. Заботу об этом берут на себя закон экранирования, первое и второе начала ОТ и универсальное взаимодействие.
Работа dQЭ , совершаемая переносимыми ансамблями, является термической работой, или теплотой. В термодинамике ее принято называть работой, или теплотой, трения. Для обозначения процессов выделения теплоты трения применяется также термин «диссипация», что означает рассеяние. Еще со времен Клаузиуса утвердилось представление о том, что теплота трения способна только выделяться, поэтому в реальных процессах вследствие выделения теплоты диссипации различные формы движения материи превращаются в теплоту, а последняя рассеивается в окружающей среде. Это и послужило основанием для принятия термина «диссипация».
Ранее закон (222) я тоже по инерции называл законом диссипации, хотя мне уже было известно, что мера количества термического вещества в противоположность энтропии способна не только возрастать, но и уменьшаться; об этом говорится, например, в книге [11, с.143], где термическое вещество именуется термическим зарядом. Наконец, в монографии [21, с.86] я окончательно перешел к новому термину «экранирование», который лучше отражает реальную действительность, чем прежний. Ведь фактически никакого рассеяния, обесценивания энергии в природе не происходит, так как экранированное термическое вещество способно не только выделяться, но и поглощаться: прежде чем выделиться, оно должно сначала где-то поглотиться в соответствующем процессе. Этим самым обеспечивается непрерывный и бесконечный круговорот энергии в природе.
Процессы прямого и обратного направлений можно трактовать как процессы плюс- и минус-трения, диссипации и минус-диссипации. Все это позволяет по-новому взглянуть на проблему обратимости и необратимости реальных процессов, возникшую на основе теории Клаузиуса, а также навести соответствующий порядок в имеющихся определениях, понятиях и терминах [18,20,21] [ТРП, стр.194-197].
5. Седьмое начало ОТ, или обобщенный закон заряжания.
В ходе стыковки первого и второго начал ОТ с четырьмя остальными были сформулированы законы заряжания и экранирования. В результате для определения энергии мы располагаем уже тремя типами различных уравнений (31), (220) и (222). Требуется выяснить, не противоречат ли эти уравнения друг другу, не дублируют ли одно другое и как связаны между собой энергии U , U3 и UЭ .