Второй закон структуры принципиально отличается от первого, описываемого уравнениями (73) и (76). Первый закон относится к явлениям состояния, он характеризует структуру с точки зрения способности системы заполняться веществом. Второй закон относится к явлениям переноса, он характеризует структуру с точки зрения способности системы пропускать сквозь себя вещество [ТРП, стр.150-152].
9. Вторые законы структуры второго и более высоких порядков.
Разовьем далее цепочку вторых законов структуры. По аналогии с первыми законами коэффициенты ВР можно выразить через экстенсоры. Однако для целей шестого начала в качестве аргументов целесообразно воспользоваться интенсиалами, тогда применительно к системе с двумя степенями свободы (n = 2) можно написать (ограничиваемся только первыми строчками уравнений)
ВР111 = fР111(Р1 ; Р2) ; (143)
...
Продифференцировав эти уравнения, получаем
dВР111 = СР1111dР1 + СР1112dР2 ; (144)
...
где
СР1111 = (?ВР111/?Р1)Р2 = ?2КР11/?Р21 = ?3Е1/?Р31 =?4А2/?Р41 ; (145)
...
В гипотетическом частном случае системы с одной степенью свободы (n = 1) имеем
ВР = fР(Р) (146)
ВР = СРdР (147)
где
СР = dВР/dР = d2К/dР2 = d3Е/dР3 = d4А/dР4 (148)
Уравнения (143)-(148) напоминают прежние выражения (79)-(84), они определяют вторые коэффициенты структуры второго порядка ВР через более тонкие свойства СР - вторые структуры третьего порядка, основные и перекрестные, или увлечения, являющиеся коэффициентами пропорциональности при изменениях интенсиалов – dP . Полученный результат составляет содержание второго закона структуры второго порядка.
Если выразить коэффициенты пропорциональности СР через интенсиалы, то можно продолжить цепочку вторых законов структуры и получить новые, более тонкие вторые структуры четвертого порядка DР , которые являются коэффициентами пропорциональности в уравнении второго закона структуры третьего порядка, и т.д. В случае идеальной системы обобщенные проводимости КР являются величинами постоянными, а коэффициенты ВР , СР , DР и т.д. обращаются в нуль. Результаты, полученные для обобщенной проводимости КР , в равной мере справедливы также и для частных проводимостей ? , ? , L и М , входящих в частные уравнения переноса [ТРП, стр.152-153].
10. О теореме Кюри.
При практическом использовании уравнений переноса необходимо принимать во внимание некоторые тонкости. В частности, это связано с тем, что между конкретными потоками J и I , а также термодинамическими силами X и ? с математической точки зрения имеется существенная разница. Например, сила X представляет собой скаляр, а сила ? - вектор. Это накладывает на уравнения переноса известный отпечаток и, кроме того, служит причиной возникновения определенных заблуждений, имеющих принципиальное значение. Ввиду важности затронутого вопроса остановимся на нем более подробно.
Принято считать, что возможность сочетания в одном уравнении потоков J и I и сил X и ? определяется известной теоремой Кюри (также Генрио) [4, с.11; 36, с.100]. Согласно этой теореме, потоки и силы в уравнениях переноса должны иметь одинаковый тензорный ранг или разница в рангах должна быть четной. В противном случае потоки и силы подставлять в уравнения нельзя. Принято также думать, что при несоблюдении теоремы Кюри потоки не способны влиять друг на друга [4, с.19; 36 с.129, 152].
Различают тензоры нулевого, первого и второго рангов. К тензорам нулевого ранга относятся скалярные величины. Скалярами, в частности, являются интенсиалы - температура, давление, электрический и химический потенциалы и их разности. Следовательно, сила X - напор интенсиала - есть типичная скалярная величина, или тензор нулевого ранга.
К тензорам первого ранга относятся векторные величины. Векторами являются градиенты скаляров, в частности градиенты интенсиалов - температуры, давления, электрического и химического потенциалов и т.д. Следовательно, сила ? - градиент интенсиала - представляет собой вектор, или тензор первого ранга.
Тензорами второго ранга являются обычные тензоры. В частности, поток вязкой жидкости, определяемый законом вязкостного трения Ньютона, является тензорным потоком.
Что касается потоков J и I , то они могут рассматриваться либо как скаляры - тензоры нулевого ранга, если имеется в виду только их абсолютная величина, или модуль, либо как векторы - тензоры первого ранга, если имеются в виду их модуль и направление одновременно.
Запрет, налагаемый теоремой Кюри на сочетание в уравнении переноса тензоров, разница в рангах которых нечетна, рассматривается как запрет на возможность взаимного влияния соответствующих потоков. Например, считается, что поток вязкой жидкости, определяемый тензорным законом Ньютона, в принципе не способен взаимодействовать с потоками теплоты, электричества, диффундирующей массы и т.д., поскольку последние описываются векторными законами Фурье, Ома, Фика и т.п. и, следовательно, разница в рангах для них равна единице - величине нечетной.