Коэффициенты взаимности А12 и А21 фактически определяют симметричный характер силового поведения вещества, ибо мы находимся на эволюционном уровне простейшего силового взаимодействия. Поэтому первоначальное формирование ансамбля из соответствующих квантов неизбежно должно сопровождаться возникновением симметричных вещественных структур. Следовательно, коэффициенты взаимности можно назвать также коэффициентами симметрии структуры, или просто коэффициентами симметрии.
Обсуждаемая симметрия непосредственно определяется производными первого порядка от интенсиалов (см. уравнение (85)), поэтому заслуживает наименования симметрии первого порядка; она наиболее ярко выражена в ансамбле. В соответствии с этим величины А12 и А21 , суть коэффициенты симметрии первого порядка, а закон взаимности - четвертое начало ОТ - можно назвать также законом симметрии структуры первого порядка, или просто законом симметрии первого порядка.
Обращает на себя внимание разнообразие свойств, которыми одновременно обладают коэффициенты А , и определяющих эти свойства терминов. Все это разнообразие есть следствие той важной роли, которую играют в природе третье и четвертое начала ОТ, а также универсальное взаимодействие. Более тонкие виды симметрии (более высоких порядков) выявляются в ходе дальнейшей расшифровки смысла коэффициентов А методами ОТ [ТРП, стр.125-127].
3. Закон симметрии структуры второго порядка.
В уравнениях (73) количественная сторона влияния любого данного экстенсора на любую из структур А определяется коэффициентами пропорциональности В . Среди них особый интерес представляют перекрестные коэффициенты, так как именно они характеризуют механизм образования тонкой симметричной структуры второго порядка.
Набор перекрестных коэффициентов в законе структуры (73) оказывается значительно более обширным, чем в третьем начале (54). В законе (73) перекрестные коэффициенты определяют как влияние данного экстенсора на несопряженную с ним основную структуру (В112 и ?221), так и совместное влияние обоих экстенсоров на перекрестные структуры (В121 , B122 , B211 и В212).
Сопоставление правых частей формул (74) позволяет прийти к интереснейшему заключению о том, что в случае закона (73) тоже имеется определенная симметрия во взаимном силовом влиянии веществ и их структур. Эта симметрия в условиях, когда ? = 2, может быть выражена с помощью следующих соотношений взаимности, вытекающих из уравнений (74):
В112 = В121 = В211 ; B122 = B212 = B221 (88)
С увеличением числа степеней свободы n количество таких соотношений резко возрастает.
Из равенств (73) и (88) видно, что второе вещество Е2 влияет через коэффициент В112 на первую основную структуру А11 в количественном отношении точно так же, как первое вещество ?1 влияет через коэффициенты В121 и В211 на обе перекрестные структуры А12 и А21 . В свою очередь, влияние первого вещества ?1 на вторую основную структуру А22 в точности равно влиянию второго вещества Е2 на каждую из перекрестных структур А12 и А21 , причем количественная сторона этого влияния определяется перекрестными коэффициентами B221 , B122 и B212 .
Результат (88) составляет содержание закона симметрии структуры второго порядка. В данном случае действует прежний механизм силового взаимодействия между квантами вещества в ансамбле, но при этом проявляются более тонкие, чем прежде, особенности структурной симметрии. Перекрестные величины В являются коэффициентами симметрии второго порядка [ТРП, стр.127-128].
4. Законы симметрии структуры третьего и более высоких порядков.
Равенства (81), определяющие коэффициенты структуры третьего порядка С , которые входят в уравнения закона структуры второго порядка (80), позволяют найти уравнения закона симметрии структуры третьего порядка. Для этого надо сопоставить правые части развернутых равенств (81). Имеем
С1112 = С1121 = С1211 = С2111 ;
С1122 = С1212 = С1221 = С2112 = С2121 = С2211 ; (89)
С1222 = С2122 = С2212 = С2221 .
Из соотношений (80) и (89) следует, что общее число коэффициентов структуры С равно 16, из них коэффициентов симметрии 14.
Если пойти по этому пути дальше и выразить коэффициенты структуры третьего порядка С через коэффициенты структуры четвертого порядка D , то последних будет 32, из них коэффициентов симметрии 30 и т.д. С увеличением тонкости структуры и числа степеней свободы системы n количество признаков симметрии возрастает многократно. Продолжить эту цепочку законов симметрии структуры не составляет большого труда [18, с.23, 184; 21, с.60].
Таким образом, проясняется физический механизм формирования симметричных структур. Этот механизм проявляется уже на первом этапе эволюционного перехода явлений от парена (абсолютного вакуума) к простым явлениям и распространяется далее в соответствии с правилом вхождения на все без исключения более сложные формы явлений природы. Причина механизма заключается в действии третьего и четвертого начал ОТ, что позволяет по-новому взглянуть и на сами эти начала.