С целью удовлетворения второму требованию в принципе возможно вместо простой замкнутой циркуляции вещества осуществить какой-либо другой, более сложный круговой процесс, или цикл, например типа того, что происходит в паровой машине, холодильнике и т.д. Главное заключается в том, чтобы система периодически возвращалась в исходное состояние и благодаря этому устройство было бы способно работать неограниченно долго. Однако здесь я буду говорить только о циркуляционных вечных двигателях второго рода, отличающихся наибольшей простотой и наглядностью и не требующих для своего осуществления никаких уникальных и дорогих устройств.
Должен сказать, что круговая циркуляция вещества обычно обладает малой интенсивностью, так как самопроизвольно возникающие разности интенсиалов весьма невелики. Это одна из причин, почему ранее ее обнаружить не удавалось. Вторая, более важная причина - запрет теории Клаузиуса: если кому-либо из ученых и доводилось когда-нибудь наблюдать в опыте соответствующую циркуляцию, то он не верил глазам своим - такова сила догмы. Для создания устройств большой мощности требуется, возможно, пойти по тому же пути, по какому пошел живой организм (он объединяет в себе многие миллиарды подобных однотипных контуров). Обычно эти контуры представляют собой самофункционирующие термодинамические пары, входящие в главный эволюционный макроряд.
Весьма существенно, что каждая такая самофункционирующая система нарушает, помимо закона Клаузиуса, еще какой-нибудь известный закон либо опирается на некий новый закон, неизвестный ранее. Например, термофазовый ПД нарушает уравнение Томсона-Кельвина (см. параграф 4 гл. XXIII), один из термоэлектрических ПД нарушает закон Вольта (см. параграф 5 гл. XXIII), а другой имеет в своей основе новый закон, обнаруженный в рамках ОТ (см. параграф 6 гл. XXIII), и т.д.
Должен заметить, что в природе существует бессчетное множество уже готовых термодинамических неоднородностей, обеспеченных соответствующими круговыми процессами. К их числу относятся, например, разности температур между различными слоями воздуха, воды и Земли, разности давлений насыщенного пара над соленой водой моря и пресной водой втекающей в него реки (намек на это содержится, в частности, в работе Трайбуса [76]) и т.п. Все эти и многие другие подобные разности и круговые процессы, несомненно, нарушают второй закон термодинамики, но делают это очень ненаглядно, ибо в качестве рабочего тела иногда приходится рассматривать большие участки атмосферы, воды и земли либо даже всю Землю или Солнечную систему. Это запутает кого угодно, поэтому такой ПД не убедителен. Надо использовать разности интенсиалов и круговые процессы, намеренно осуществляемые в небольшом контролируемом объеме, чтобы все происходило на глазах изумленного экспериментатора. Иными словами, для создания ПД необходимы разности интенсиалов, которые образуются самопроизвольно и затем поддерживаются тоже самопроизвольно и вечно на определенном уровне благодаря осуществлению непрерывного или периодически повторяющегося кругового процесса, происходящего в контролируемом объеме под действием указанных разностей интенсиалов. Наиболее твердый орешек здесь - это круговой процесс [ТРП, стр.448-450].
3. Нарушение теории фазовых превращений Томсона-Кельвина.
Теперь можно приступить к описанию различных реально действующих циркуляционных вечных двигателей второго рода (ПД). Первый из них основан на использовании процессов фазовых превращений - испарения жидкости и конденсации пара. Принято считать, что эти процессы подчиняются теории Томсона-Кельвина. Однако детальный теоретический и экспериментальный анализ с позиций ОТ покажет, что это не соответствует действительности, и поможет нам создать соответствующие фазовые ПД. Рассмотрим этот вопрос более подробно. Хорошо известно уравнение Томсона-Кельвина (1871 г.), определяющее давление насыщенного пара над искривленной поверхностью жидкости. Согласно этому уравнению, давление над выпуклым мениском должно быть выше, а над вогнутым - ниже, чем над плоским (в справочниках обычно приводится давление насыщенного пара над плоским мениском, оно принимается за основу и считается равным 100%). Это значит, что в среде с давлением насыщенного пара 100% в несмачиваемом капилляре жидкость, имеющая выпуклый мениск, должна испаряться, а в смачиваемом, наоборот, благодаря вогнутому мениску конденсироваться.