Читаем Термодинамика реальных процессов полностью

 Затем датский физик Эрстед (1820 г.) обнаружил магнитное поле тока. В том же году французский физик Ампер предположил, что магнетизм есть явление, сопутствующее движению электрических зарядов, а Био и Савар открыли закон, определяющий величину магнитного поля тока. С тех пор магнитное явление чаще всего подменяется электрическим, а представление о существовании магнитных масс рассматривается как метафизическое измышление. Однако ОТ позволяет внести в этот вопрос необходимую ясность и создает реальные предпосылки для более глубокого изучения магнитного явления на совершенно другой основе, чем это было принято до сих пор [21, с.115].

 Действительно, хорошо известно, что магнитное и электрическое поля реально существуют и обладают принципиально различными свойствами. Опыт также показывает, что магнитное поле не взаимодействует с электрическим зарядом, а электрическое поле – с магнитными полюсами; для такого взаимодействия необходимо появление дополнительной степени свободы – метрической (кинетической). Эти факты однозначно свидетельствуют о реальном существовании двух самостоятельных и независимых явлений – магнитного и электрического. Если бы магнитное явление было не самостоятельным, а порождалось электрическим, тогда не поддается объяснению факт отсутствия взаимодействия между электрическим зарядом и магнитным полем. Согласно изложенным выше правилам, в принципе не может существовать такого положения, чтобы какое-либо вещество в определенных условиях было бы не в состоянии взаимодействовать с порождаемым им нанополем.

 Следовательно, все рассуждения и выводы об электрическом происхождении магнетизма являются необоснованными. Истинно простое магнитное явление реально существует. Как и всякое простое явление, оно специфично и неповторимо и поэтому не может быть сведено ни к какому другому явлению, в том числе к электрическому. Вместе с тем имеется органическая связь между магнитным, электрическим, метрическим и всеми остальными простыми явлениями природы, что обусловлено наличием универсального взаимодействия. Благодаря этой связи наблюдаются эффекты взаимного увлечения явлений, в частности эффекты возникновения магнитного поля под действием электрического тока и электрического тока под действием магнитного поля. Эти эффекты с качественной и количественной сторон определяются с помощью третьего, четвертого, пятого и шестого начал ОТ.

 В настоящее время физический механизм магнитного явления, его специфические свойства изучены недостаточно. Например, в работе [22, с.93] мною высказано предположение, согласно которому в природе существует особое простое магнитное вещество, порции (кванты) этого вещества входят в состав тончайших ансамблей (частиц), названные сатлонами (от английского subtle – тонкий, нежный, неуловимый, едва различимый, трудно уловимый). Циркуляция сатлонов в различных телах, включая элементарные частицы, и окружающем их пространстве создает все наблюдаемые магнитные эффекты. Эта гипотеза объясняет все известные особенности магнитного явления и позволяет предсказать новые специфические эффекты, не доступные для прежней теории. Некоторые из этих экзотических магнитных прогнозов ОТ уже нашли экспериментальное подтверждение.

 Сатлоны носятся в теле и вокруг него примерно по тем же траекториям, по которым выстраиваются  железные опилки. Наличие двух различных полюсов у магнита объясняется не разными знаками магнитного вещества, а фактом входа или выхода сатлонов из тела. Магнитные свойства тела сильно зависят от характера движения сатлонов и, возможно, от их структуры. Например, интересно проявляет себя магнетизм при взаимодействии двух параллельных проводников с током: если токи имеют одинаковое направление, то проводники притягиваются, если разное, то отталкиваются. В данном случае увлеченные током сатлоны двигаются вокруг проводников по кругу либо в одну, либо в разные стороны; при этом направление возникающей силы целиком определяется характером движения сатлонов, в том числе характером их взаимодействия между собой.

 Существование самостоятельных вещественных носителей магнетизма и наличие у сатлонов массы (размеров) доказывается с помощью двух простейших опытов. Первый из них соответствует парадоксу Бьюли, суть этого парадокса сводится к следующему [62].

Предположим, что имеется широкий плоский магнит. Если один из его полюсов, например северный, перемещать возле проводника, замкнутого на гальванометр, то в последнем возникнет ток. Если далее по другую сторону проводника расположить другой точно такой же магнит с северным полюсом, обращенным к первому, и двигать одновременно оба магнита в ту или другую сторону, не изменяя расстояния между ними, то тока в проводнике не будет, ибо суммарная напряженность магнитного поля между двумя одноименными полюсами равна нулю: по существующим представлениям, силовые линии, идущие навстречу друг другу, взаимно погашаются.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки