Обычно, такой способ решения учащиеся легко усваивают, видимо, вследствие того, что «становятся на привычную почву» – решение примера с прямыми тригонометрическими функциями, хорошо известными и многократно используемыми ими ранее.
Более сложной задачей является решение уравнений с обратными тригонометрическими функциями. Здесь важно предварительно обсудить с учащимися тот факт, что если функция немонотонна, то равенство значений функции не обязательно приводит к равенству значений аргументов:
т.е. все решения первого уравнения являются решениями второго уравнения, а обратное может быть неверно. Эти уравнения равносильны только на промежутках монотонности функции синуса. Аналогично и для других тригонометрических функций. Обычно, именно слабое понимание этого обстоятельства приводит к грубым ошибкам в решениях уравнений с обратными тригонометрическими функциями, так как в процессе решения таких уравнений, обычно, приходится от заданного уравнения
Решить уравнение 2arcsin
Нужно решать уравнение так:
arcsin
и далее получаем равносильное уравнение
sin(arcsin
так как значения левой и правой части уравнения (4) принадлежат интервалу (–; ), а на этом промежутке функция синуса монотонна. Но если мы заменим данное уравнение уравнением
sin(2arcsin
то получим уравнение-следствие, решение которого может содержать посторонние корни, а проверка в уравнениях с обратными тригонометрическими функциями часто весьма затруднительна.
В заключение хочется отметить, что в изложении темы «Решение примеров с обратными тригонометрическими функциями» правильный методический подход является особенно важным. Опыт показывает, что методические погрешности в изложении этой темы особенно заметны и более ощущаются, чем во многих других темах. Вероятно, это связано с большей сложностью решения таких примеров для учащихся ввиду того, что от них требуется более глубокое понимание и гибкое использование всех свойств тригонометрических функций. Это обстоятельство «роднит» эти примеры с задачами с параметрами, которые по праву считаются наиболее сложным разделом элементарной математики. В то же время хорошее знание данной темы необходимо для изучения теоретических дисциплин в техническом вузе, решения многих технических задач.
ВИКОРИСТАННЯ НОВИХ ІНФОРМАЦІЙНИХ
ТЕХНОЛОГІЙ У МАТЕМАТИЦІ
А.А. Гулеватий, Н.М. Самарук
м. Хмельницький, Хмельницький інститут економіки та підприємництва
Розвиток науки та техніки вимагає впровадження у навчальний процес великої кількості навчальних дисциплін. Така різноманітність посилює дедалі більшу диференціацію навчальних предметів. Поступово втрачається органічний взаємозв’язок дисциплін. Тому в наш час актуально постає питання посилення внутрішніх і міжпредметних зв’язків, інтеграції навчальних дисциплін.
У системі навчальних предметів математичного циклу вищій математиці відводиться роль основи для формування нових абстрактних понять, які ідеалізують навколишню дійсність, для введення нового математичного апарату. Вища математика є фундаментальною нормативною навчальною дисципліною, найвагомішою базовою складовою математичної підготовки фахівців з вищою освітою за напрямами технічного і економічного професійного спрямування. Ця дисципліна також є допоміжним інструментом у багатьох курсах природничих наук – астрономії, фізики, математичного програмування, теорії ймовірностей, економетрії тощо.
Вища математика активно використовується при викладанні ряду спеціальних вибіркових курсів, при виконанні студентами розрахункових курсових і дипломних робіт. Нарешті, курс вищої математики є ефективним засобом підвищення загальної культури логічного, абстрактного мислення студентів. Отже, вища математика потрібна як в процесі навчання студентів, так і подальшій їхній професійній діяльності.
Високий рівень математичної підготовки фахівців технічних і економічних спеціальностей передбачає:
а) відповідний рівень математичної культури, необхідний для успішного засвоєння фахових дисциплін і самостійного вивчення в майбутньому наукової літератури з математики та її застосування;
б) вміння будувати математичні моделі технічних і економічних процесів і аналізувати їх засобами математики;
в) вміння вибирати і застосовувати належні методи їх розв’язування.
Останніми роками спостерігається хибна тенденція зменшення зацікавленості студентів у вивченні вищої математики. Причинами даного факту є:
слабкий рівень шкільної підготовки;
зменшення кількості аудиторних годин на вивчення вищої математики;
недостатнє використання математичних методів випускаючими кафедрами в курсових та дипломних роботах, а тому нерозуміння студентами ролі, місця і значення вищої математики в системі інших наук.