Работа Дональдсона не только пролила свет на разыскиваемые им инварианты, но также позволила обнаружить весьма неожиданный и загадочный факт, а именно существование неизвестного прежде класса «экзотических» пространств, возможных только в четырех измерениях. Чтобы объяснить, что в данном контексте значит слово экзотический, необходимо вначале затронуть вопрос о том, какие две поверхности или многообразия можно считать идентичными. У математиков существуют различные методы сравнения многообразий. Первый из них связан с представлением о топологической эквивалентности. Проиллюстрировать этот метод можно при помощи примера со сдутым и накачанным мячом. Два объекта называют топологически идентичными, или гомеоморфными, если один из них можно преобразовать в другой исключительно путем изгиба, сжатия или растяжения, не прибегая к разрезам. Подобный переход от одного многообразия к другому носит название непрерывного отображения. Это отображение является взаимно-однозначным, то есть каждая точка одной поверхности соответствует строго определенной точке другой поверхности. Более того, точки, находившиеся в непосредственной близости друг от друга на первой поверхности, после подобного отображения по-прежнему останутся рядом.
Второй метод сравнения многообразий характеризуется несколько большей утонченностью и строгостью. В этом случае вопрос состоит в том, возможно ли перейти от одного многообразия к другому, не нарушая его гладкости, то есть не вводя так называемые сингулярности, например острые углы или пики на поверхности. Многообразия, эквивалентные в этом смысле, носят название диффеоморфных. Чтобы два многообразия можно было считать диффеоморфными, функция, преобразующая одно многообразие в другое — или, иными словами, переводящая набор координат одного пространства в набор координат второго, — должна быть гладкой — дифференцируемой, то есть иметь производную во всех точках пространства в любой момент времени. График такой функции также должен быть гладким — не иметь никаких «зазубрин» во всех смыслах этого слова — наличие на нем обрывов, участков скачкообразного роста или падения привело бы к тому, что в определенных точках само понятие производной потеряло бы смысл.
В качестве примера рассмотрим сферу, помещенную внутрь эллипсоида — поверхности, имеющей форму дыни, — так, что их центры совпадают. Лучи, проведенные из их общего центра во всех возможных направлениях, соединят точки на сфере с точками на эллипсоиде. Подобная операция может быть проделана для любой точки эллипсоида или сферы. Отображение в данном случае не только является непрерывным и однозначным, но оно также не нарушает гладкости отображаемой поверхности. Функция, связывающая две эти поверхности, также не имеет никаких особенностей — это просто прямая линия без зигзагов, резких поворотов и вообще чего-либо необычного. Таким образом, два рассматриваемых объекта — сферу и эллипсоид — можно назвать как гомеоморфными, так и диффеоморфными.
Рис. 3.12. Геометр Саймон Дональдсон
Противоположным примером является так называемая экзотическая сфера. Экзотической сферой называется гладкое во всех точках семимерное многообразие, которое, тем не менее, невозможно без нарушения гладкости преобразовать в обычную круглую семимерную сферу даже при соблюдении условия непрерывности преобразования. Таким образом, подобные поверхности являются гомеоморфными, но не диффеоморфными. Джон Мильнор, уже упоминавшийся в данной главе, получил медаль Филдса во многом благодаря установлению им факта существования экзотических пространств. До открытия Мильнора многие сомневались в существовании таких пространств, поэтому их и назвали экзотическими.
Плоское евклидово пространство для случая двух измерений является простейшим из всех пространств, которые можно себе представить, — это плоская поверхность, подобная крышке стола, которая простирается бесконечно во всех возможных направлениях. На вопрос, будет ли двухмерный диск, множество точек которого является подмножеством точек плоскости, гомеоморфным и диффеоморфным данной плоскости, можно ответить — да, будет. Можно представить себе толпу людей, стоящих на плоскости, каждый из которых берет в руку краешек диска и идет с ним в направлении от центра диска. Как только они достигнут бесконечности, диск точно, непрерывно и однозначно совпадет с плоскостью. Таким образом, эти объекты идентичны с точки зрения тополога. Очевидно и то, что подобный процесс растягивания диска в радиальном направлении можно проделать без нарушения его гладкости.