В следующей главе мы рассмотрим многообразия более подробно. Топологи пытаются свалить в одну кучу различные объекты, имеющие одинаковую базовую структуру, даже если те совершенно не похожи внешне и даже различаются в отдельных деталях. Так, двухмерные поверхности — при условии их компактности, то есть замкнутости и ограниченности, и ориентируемости (наличии внешней и внутренней стороны) — можно классифицировать по количеству имеющихся дырок: тороидальные поверхности имеют по крайней мере одну дырку, тогда как топологическими сферами называются поверхности, которые дырок не имеют вовсе. Если число дырок для двух подобных поверхностей одинаково, то для тополога они эквивалентны, несмотря на всю разницу в их внешнем виде. Так, и чашка кофе и сушка, которую в нее обмакнули, являются торами первого рода. Тем же, кто предпочитает сушки с молоком, интересно будет узнать, что стакан, из которого они пьют, топологически эквивалентен сфере — его можно получить, протолкнув северный полюс в направлении южного и чуть подкорректировав форму полученного объекта.
Если двухмерный случай был досконально изучен более столетия назад, то ситуация для более высоких размерностей выглядела намного сложнее. «Удивительно, что классификация поверхностей становится проще для пяти измерений и выше, — заметил математик Уорикского университета Джон Д. С. Джонс. — Сложнее всего работать с тремя и четырьмя измерениями».[36] К несчастью, именно случай трех и четырех измерений является важнейшим в физике. Уильям Тёрстон в 1982 году разработал схему классификации трехмерных поверхностей, разделив их на восемь основных типов геометрии. Его гипотеза, известная как гипотеза геометризации Тёрстона, была доказана два десятилетия спустя, о чем вкратце будет рассказано далее.
Атака на четвертое измерение началась примерно в то же время, когда Тёрстон высказал свое смелое предположение. Четырехмерные пространства тяжело не только представлять, но и описывать математически. Чтобы наглядно представить себе четырехмерный объект, вообразите трехмерный объект, форма которого изменяется со временем, например пульсирующий баскетбольный мяч, который периодически сжимается и вновь восстанавливает прежнюю форму. Детальная геометрия таких объектов весьма запутанна, если не сказать больше, однако она является ключом к пониманию того четырехмерного пространства-времени, в котором мы живем.
Некоторые из ключей к разгадке геометрии четырехмерных объектов были найдены в 1982 году, когда Саймон Дональдсон, в то время аспирант Оксфордского университета второго года обучения, опубликовал первую из нескольких статей, посвященных структуре четырехмерного пространства. Чтобы открыть окно в четвертое измерение, Дональдсон воспользовался нелинейными уравнениями в частных производных, разработанными в 1950 году физиками Чжэньнином Янгом и Робертом Миллсом. Уравнения Янга-Миллса, объединяющие сильное взаимодействие, ответственное за поведение кварков и глюонов в атомном ядре, со слабым, связанным с радиоактивным распадом, и электромагнитным — взаимодействием между заряженными частицами — работают именно в четырехмерном пространстве. Вместо того чтобы решать эти уравнения «в лоб», для чего необходимо было бы вначале установить геометрические и топологические особенности соответствующего пространства, Дональдсон подошел к проблеме с другой стороны: он рассудил, что решения уравнений должны содержать в себе информацию о том четырехмерном пространстве, в котором они работают. Точнее, данные решения должны привести к установлению некоторых ключевых величин, характеризующих соответствующие им пространства, — математики называют эти величины