Задачи на нахождения минимума уже на протяжении сотен лет играют одну из ведущих ролей в геометрии и физике. Так, в XVII столетии французский математик Пьер Ферма показал, что свет, проходя через различные среды, всегда следует по тому пути, который требует наименьшего времени, что впоследствии привело к открытию так называемого «принципа наименьшего действия», ставшему одним из первых фундаментальных физических принципов, основанных на понятии нахождения минимума.
По словам стэнфордского математика Леона Симона, «мы постоянно сталкиваемся с подобным явлением в природе, поскольку из всех возможных конфигураций всегда реализуются только те, которые имеют наименьшую энергию»[27]. Поверхность, обладающая наименьшей возможной площадью, соответствует состоянию с минимальной энергией, которое, при прочих равных условиях, всегда будет предпочтительным. Поверхность с наименьшей площадью будет иметь нулевую нормальную составляющую поверхностного натяжения, иными словами, средняя кривизна этой поверхности также будет равна нулю. По этой причине поверхность жидкости имеет плоскую форму (с нулевой кривизной) и точно такую же форму имеют мыльные пленки.
В области исследований минимальных поверхностей присутствует некоторая путаница, берущая свое начало в терминологии, не изменявшейся на протяжении столетий, несмотря на постепенное усложнение математических понятий. Дело в том, что существует еще один класс поверхностей, которые также иногда называют минимальными, хотя они и не обязательно имеют минимальную площадь. Этот класс включает поверхности, площадь которых меньше, чем площадь других поверхностей, ограниченных тем же контуром, — это могут быть как истинно минимальные поверхности или «основные состояния» так и поверхности, носящие название стационарных, которые имеют минимальную возможную площадь на отдельных участках (локально), но не в целом (глобально). Поверхности этого типа, имеющие нулевую нормальную составляющую поверхностного натяжения и нулевую среднюю кривизну, весьма интересны как математикам, так и инженерам. Мы привыкли думать о минимальных поверхностях как о членах одного семейства, весьма похожих между собой. И поскольку каждая из этих поверхностей по-своему интересна, все их можно считать уникальными.
Нахождение кратчайшего пути является одномерным вариантом более сложной задачи нахождения минимальной поверхности для большего числа измерений. Кратчайший путь между двумя точками — будь то прямая линия, плоскость или дуга окружности, соединяющая две точки на земном шаре, — иногда называют
Для нахождения упомянутых выше минимальных путей необходимо использовать дифференциальные уравнения. Чтобы найти минимальные значения, необходимо обратить внимание на точки, в которых производная равна нулю. Поверхность с наименьшей площадью должна удовлетворять определенному дифференциальному уравнению, а именно такому уравнению, которое выражает факт равенства нулю средней кривизны во всех возможных точках поверхности. Как только вы нашли требуемое дифференциальное уравнение в частных производных — вы сразу же получаете огромное количество информации о вашей задаче, поскольку за годы работы мы узнали многое об этих уравнениях.
Рис. 3.6. Хотя оригинальная формулировка проблемы Плато относится к поверхностям, натянутым на простые замкнутые кривые, можно сформулировать более сложные варианты того же вопроса — и иногда даже найти на них ответы. Например, можно ли найти минимальную поверхность в том случае, если граница состоит не из одной, а из нескольких замкнутых кривых (например, окружностей)? На рисунке приведены некоторые примеры минимальных поверхностей, являющихся решениями проблемы Плато, представленной в данной форме. (Исходное изображение — 3D-XplorMath Consortium)