Читаем Теория струн и скрытые измерения Вселенной полностью

Создание дифференциальной геометрии, которая продолжила свое развитие и после Гаусса, стало величайшим достижением. С помощью инструментов дифференциального исчисления геометры описывали свойства кривых и поверхностей с намного большей точностью, чем это было возможно ранее. Подобные сведения можно получить путем дифференцирования или, что эквивалентно, путем нахождения производных, показывающих, как изменяется функция в ответ на изменение аргумента. Функцию можно рассматривать как алгоритм или формулу, в которой каждому числу, поданному на вход (значению аргумента), ставится в соответствие некоторое число на выходе (значение функции). Например, в функции y = x2 значение аргумента x подается на вход, а на выходе получается значение функции y. Функция однозначна: если вы будете подставлять в нее одно и то же значение x, то всегда получите одно и то же значение y, так, в нашем примере, подставляя x = 2, вы всегда получите y = 4. Производная характеризует отношение приращения значения функции к заданному приращению аргумента; величина производной отражает чувствительность функции к незначительным изменениям аргумента.

Производная — это не только абстрактное понятие; это реальное число, которое можно вычислить и которое сообщает нам о наклоне кривой или поверхности в данной точке. Например, в приведенном выше примере можно найти производную функции (которая в данном случае оказывается параболой) в точке x = 2. Что произойдет со значением функции y, если немного сместиться из этой точки, например, в точку x = 2,001? В этом случае значение y станет равным 4,004 (с точностью до трех знаков после запятой). Производная в этой точке будет равна отношению приращения значения функции (0,004) к приращению значения аргумента (0,001), то есть 4. Именно это число и будет производной функции при x = 2 или, другими словами, наклоном кривой (параболы) в этой точке.

Расчеты, конечно, могут оказаться гораздо более трудоемкими при переходе к более сложным функциям и более высоким размерностям. Но вернемся на время к нашему примеру. Мы получили производную функции y = x2 из отношения приращения y к приращению x, поскольку производная функции говорит нам о наклоне (или крутизне) в данной точке — тогда как наклон служит непосредственной мерой приращения y по отношению к приращению x.

Проиллюстрируем это другим способом: рассмотрим мяч, лежащий на некоей поверхности. Если мы слегка толкнем мяч в какую-либо сторону, как это отразится на его вертикальной координате? Если поверхность более или менее плоская, то высота, на которой находится мяч, практически не изменится. Но если мяч находился на крутом склоне, изменение высоты будет более существенным. Таким образом, производные характеризуют наклон поверхности в непосредственной близости от мяча.

Рис. 2.2. Площадь фигуры, ограниченной кривой, можно вычислить при помощи интегрального исчисления, разделив область под кривой на бесконечно узкие прямоугольники и затем сложив их площади. По мере того как прямоугольники становятся все уже и уже, это приближение становится все точнее и точнее. Если перейти к пределу, при котором ширина прямоугольников стремится к нулю, результат станет точным

Конечно, нет причин ограничиваться только одной точкой на поверхности. Путем вычисления производных, показывающих изменение геометрии (или формы) для различных точек поверхности, можно точно рассчитать кривизну объекта в целом. Хотя наклон в каждой данной точке дает только локальную информацию, относящуюся к «окрестностям» указанной точки, значения, полученные для различных точек, можно объединить и вывести функцию, описывающую наклон объекта в любой точке. Затем при помощи интегрирования — грубо говоря, путем сложения и усреднения — можно получить функцию, описывающую объект как единое целое. Таким образом, мы получим представление о структуре всего объекта, что и является центральной идеей всей дифференциальной геометрии — возможность создать общую картину для всей поверхности или многообразия на основе локальной информации, полученной из производных, отражающих геометрию (или метрику) в каждой точке.

Помимо достижений в области дифференциальной геометрии, Гаусс внес существенный вклад и в другие области математики и физики. Пожалуй, наибольшее значение для нас имеет его поразительное предположение, что не только объекты, находящиеся в пространстве, но и пространство само по себе также может быть искривлено. Открытие Гаусса бросило вызов евклидовой концепции плоского пространства — представлению, относившемуся не только к интуитивно понятной двухмерной плоскости, но и к трехмерному пространству, называя которое плоским подразумевают, что параллельные линии в таком пространстве не пересекаются, а сумма углов треугольника всегда составляет ровно 180°.

θ1 + θ2 + θ3> 180° Положительная кривизна

θ1 + θ2 + θ3= 180° Нулевая кривизна

θ1 + θ2 + θ3< 180° Отрицательная кривизна

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука