Некоторые ответы были получены не в «следующей жизни», как написал Гаусс, а в следующем поколении благодаря усилиям и прекрасным способностям его студента Георга Фридриха Бернхарда Римана. Риман отличался слабым здоровьем и умер молодым, но за сорок лет своей жизни он смог перевернуть существовавшие представления о геометрии, а вместе с ними и представления о Вселенной. Риман ввел особую разновидность поля — набор чисел, соответствующий каждой точке пространства, пользуясь которым можно найти расстояние между двумя точками вдоль любой линии, которая их соединяет. Полученная информация, в свою очередь, может быть использована для определения степени искривленности пространства.
Проще всего мерить пространство в одном измерении. Все, что необходимо для измерения, например, прямой линии, — это линейка. Для двухмерного пространства, такого как пол большого танцевального зала, мы обычно берем две перпендикулярные линейки — одна из которых сопоставляется оси
В искривленных, неевклидовых пространствах все становится сложнее и интереснее, поскольку точно откалиброванные перпендикулярные линейки для измерения искривленного пространства уже не пригодны. Однако в этом случае для расчета расстояний мы можем использовать риманову геометрию. Подход, который мы применяем для расчета длины кривой, лежащей на искривленном многообразии, вам уже знаком: кривую представляют в виде ломаной, состоящей из касательных бесконечно малой длины, и затем берут интеграл вдоль всей линии, чтобы получить полную длину.
Сложность этого подхода обусловлена тем, что в искривленном пространстве длина каждого отрезка ломаной может изменяться при перемещении от одной точки многообразия к другой. Для того чтобы преодолеть эту трудность, Риман создал инструмент, известный как
Пространство, наделенное римановой метрикой, носит название
Изобретя понятие метрики, Риман показал, что пространству, имевшему до этого весьма неясное определение, можно строго приписать определенную геометрию, кривизну же лучше представлять не в виде расплывчатого понятия, а в виде точных чисел, соответствующих различным точкам пространства. И этот подход, как показал Риман, применим к пространствам любой размерности.
До Римана искривленный объект мог быть изучен только «снаружи», подобно тому, как издалека проводят геодезическую съемку горного хребта или смотрят на Землю с борта космического корабля. Вблизи же все кажется плоским. Риман указал способ установить, что мы живем в искривленном пространстве, даже не имея под рукой ничего, с чем его можно сравнить.[19] Это открытие поставило перед физиками и астрономами важнейший вопрос: если Риман прав и пространство, в котором мы живем, действительно искривлено, не означает ли это необходимости нового пересмотра наших представлений практически обо всем? Но значит ли это, что в больших масштабах Вселенная не ограничена рамками евклидовой геометрии, а пространство способно сдвигаться, искривляться и вообще — делать что угодно? Именно по этой причине астрономы и космологи проводят в настоящее время тщательные измерения в надежде установить, искривлено наше пространство или нет. Благодаря Риману теперь известно, что для проведения этих измерений совсем не нужно покидать нашу Вселенную (что было бы весьма затруднительно сделать). Напротив, узнать, искривлена ли наша Вселенная, можно, буквально не сходя с того места, на котором сидим, — что весьма комфортно как для космологов, так и для обывателей.