Читаем Теория струн и скрытые измерения вселенной полностью

В неевклидовом пространстве сумма углов треугольника может быть или больше, или меньше, чем 180°, в зависимости от того, как искривлено пространство. Если пространство, подобно сфере, имеет положительную кривизну, сумма углов треугольника всегда будет больше 180°. И напротив, если пространство имеет отрицательную кривизну, как внутренняя часть седла, сумма углов треугольника всегда будет меньше 180°. Узнать кривизну пространства можно, определив величину, на которую сумма углов треугольника больше или меньше 180°.

Гаусс также ввел понятие внутренней геометрии — идею, согласно которой объект или поверхность имеет свою собственную кривизну (так называемую гауссову кривизну), которая не зависит от того, как этот объект располагается в пространстве. Рассмотрим для примера лист бумаги. Можно ожидать, что его кривизна равна нулю, и так оно и есть. Теперь свернем этот лист бумаги в цилиндр. Двухмерная поверхность цилиндра, согласно Гауссу, имеет две главные кривизны, проходящие в направлениях, перпендикулярных друг другу: первая кривизна относится к окружности и имеет величину 1/r, где r — это радиус основания цилиндра. Если r = 1, то эта кривизна также равна единице. Вторая кривизна проходит вдоль образующей цилиндра, которая представляет собой прямую линию. Кривизна прямой линии, очевидно, равна нулю, поскольку прямая — она и есть прямая. Гауссова кривизна цилиндра, как любого другого двухмерного объекта, равна произведению одной кривизны на вторую, которое в нашем случае равно 1x0 = 0. Таким образом, в понятиях собственной кривизны цилиндр представляет собой то же самое, что и лист бумаги, из которого он свернут, — он совершенно плоский. Нулевая собственная кривизна цилиндра обусловлена тем, что цилиндр можно сделать из листа бумаги, не растягивая и не деформируя его. Иными словами, измерения расстояний между любыми двумя точками на поверхности листа — вне зависимости от того, разложен ли лист на столе или свернут в трубочку, — дадут одинаковые результаты. Это значит, что геометрия и, следовательно, собственная кривизна листа бумаги остаются неизменными вне зависимости от того, плоский этот лист или свернутый.

Аналогично, если бы удалось сделать из цилиндра тор, соединив его концы вместе — также без растяжений и деформаций, — то внутренняя кривизна полученного тора все равно осталась бы равной внутренней кривизне цилиндра, то есть нулю. На практике, однако, сделать так называемый плоский тор — по крайней мере в двух измерениях — невозможно по причинам, которые будут обсуждаться далее (в четвертой главе). Но теоретически подобный объект (называемый абстрактной поверхностью) изготовить можно, и он столь же важен для математики, как и те объекты, которые мы называем реальными.

Рис. 2.4. Тороидальная (имеющая форму бублика) поверхность может быть совершенно «плоской» (имеющей нулевую гауссову кривизну), поскольку ее можно изготовить, сворачивая лист бумаги в трубку или цилиндр и затем соединяя концы полученного цилиндра

С другой стороны, сфера довольно существенно отличается от цилиндра или плоского тора. Рассмотрим, к примеру, кривизну сферы радиуса r. В этом случае кривизна одинакова по всей поверхности сферы, и ее можно определить как 1/r2. Мы видим, что на поверхности сферы все направления эквивалентны, что явно неверно в случае цилиндра или бублика. Именно по этой причине не важно, как ориентирована сфера в трехмерном пространстве; маленький жучок, живущий на ее поверхности, скорее всего, не замечает пространственной ориентации сферы и все, что его беспокоит и дается ему в ощущениях, — это геометрия его локального двухмерного мира.

Наряду с Николаем Лобачевским и Яношем Бойяи Гаусс внес большой вклад в наше понимание абстрактного пространства, в частности для двухмерного случая, хотя он сам признавал наличие определенной путаницы в этой области. И все же, в конечном итоге, ни Гаусс, ни его коллеги не сумели полностью освободить наши представления о пространстве от евклидовых рамок. Гаусс выразил свое замешательство в письме, написанном им в 1817 году астроному Генриху Вильгельму Маттеусу Ольберсу: «Я все больше убеждаюсь, что необходимость нашей геометрии не может быть доказана, по крайней мере, человеческим рассудком и для человеческого рассудка. Может быть, в следующей жизни мы придем к взглядам на природу пространства, которые нам сейчас недоступны».[18]

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука