Мы научились систематически делить задачи на меньшие, получая большое увеличение производительности. Многократное деление задач часто бывает сопряжено с решением проблем, вызванных одинаковыми подзадачами. В этих случаях важно использовать динамическое программирование, чтобы избежать повторных вычислений.
Мы убедились, что поиск с возвратом позволяет оптимизировать некоторые алгоритмы, основанные на полном переборе. Значения верхних и нижних границ (там, где их можно получить) позволяют ускорить поиск решения, для этого используется метод ветвей и границ. А когда стоимость вычисления оптимального решения оказывается неприемлемой, следует использовать эвристический алгоритм.
Все стратегии, с которыми мы познакомились, предназначены для работы с данными. Далее мы узнаем самые распространенные способы организации данных в памяти компьютера и как они влияют на производительность операций.
Полезные материалы
•
• Выбор стратегии проектирования алгоритмов (Choosing Algorithm Design Strategy, Shailendra Nigam, см. https://code.energy/nigam).
• Динамическое программирование (Dynamic programming, by Umesh V. Vazirani, см. https://code.energy/vazirani).
Глава 4. Данные
Хорошие программисты беспокоятся о структурах данных и их отношениях.
Контроль над данными в computer science имеет принципиальное значение: вычислительные процессы состоят из операций над данными, которые преобразуют вход в выход. Но алгоритмы обычно не конкретизируют
Но прежде чем мы углубимся в эту тему, давайте разберемся, что означают термины «абстракция» и «тип данных».
Абстракции
Абстракции позволяют нам опускать детали; они представляют простой интерфейс для доступа к функциональности сложных объектов. Например, автомобиль скрывает сложный механизм за панелью управления, причем таким образом, что любой человек может легко научиться водить без необходимости разбираться в машиностроении.
В программном обеспечении
html ← fetch_source("https://code.energy")
Всего одной строкой кода мы получили страницу сайта, несмотря на то что внутренние операции для этой задачи чрезвычайно сложны[45].
Абстракции данных будут центральной темой главы. Они скрывают детали процессов обработки данных. Но прежде чем мы сможем понять, как работает абстракция, нам необходимо освежить наше понимание типов данных.
Тип данных
Мы различаем разные типы крепежных изделий (как, например, винты, гайки и гвозди) согласно операциям, которые можем с ними выполнить (к примеру, используя отвертку, гаечный ключ или молоток). Точно так же мы различаем разные типы
Например, переменная, содержащая последовательность символов, которые можно преобразовать в верхний или нижний регистр, и допускающая добавление новых символов, имеет тип String (строка). Строки представляют текстовые данные. Переменная, которую можно инвертировать и которая допускает операции XOR, OR и AND, имеет тип Boolean (логический). Такие булевы переменные принимают одно из двух значений: True или False. Переменные, которые можно складывать, делить и вычитать, имеют тип Number (численный).