Читаем Теоретический минимум по Computer Science полностью

В задаче о жадном грабителе и рюкзаке (см. раздел «Эвристические алгоритмы» ) прибыль, полученная посредством greedy_knapsack, является нижней границей оптимальной прибыли (она может быть или не быть близкой к оптимальной прибыли). Теперь представим версию задачи о рюкзаке, в которой вместо предметов у нас сыпучие материалы, и мы можем насыпать их в рюкзак, сколько поместится. Эта версия задачи решается «жадным» способом: просто продолжайте насыпать материалы с самым высоким соотношением стоимости и веса:

function powdered_knapsack(items, max_weight)

····bag_weight ← 0

····bag_items ← List.new

····items ← sort_by_value_weight_ratio(items)

····for each i in items

········weight ← min(max_weight — bag_weight,

·····················i.weight)

········bag_weight ← bag_weight + weight

········value ← weight * i.value_weight_ratio

········bagged_value ← bagged_value + value

········bag_items.append(item, weight)

····return bag_items, bag_value

Добавление ограничения неделимости предметов только уменьшит максимально возможную прибыль, потому что нам придется менять последнюю уложенную в рюкзак вещь на что-то подешевле. Это означает, что powdered_knapsack дает верхнюю границу оптимальной прибыли с неделимыми предметами[43].

<p>Ветви и границы в задаче о рюкзаке</p>

Мы уже убедились, что поиск оптимальной прибыли в задаче о рюкзаке требует дорогих вычислений O(n2). Однако мы можем быстро получить верхние и нижние границы оптимальной прибыли при помощи функций powdered_knapsack и greedy_knapsack. Давайте попробуем это сделать на примере задачи о рюкзаке (табл. 3.3).

Таблица 3.3. Верхняя и нижняя границы в задаче о рюкзаке
ПредметСтоимостьВесСоотношение стоимости и весаМакс. вместимость
A2054,00 
B1944,75 
C1628,0010
D1452,80 
E1334,33 
F924,50 

Рисунок справа иллюстрирует ситуацию перед началом заполнения рюкзака. В первом поле находятся неупакованные предметы, которые нам предстоит рассмотреть. Второе поле представляет свободное место в рюкзаке и предметы, которые уже уложены. Выполнение функции greedy_knapsack дает прибыль 39, а powdered_knapsack — 52,66. Это означает, что оптимальная прибыль находится где-то посередине. Как мы знаем из раздела «Разделяй и властвуй», эта задача с n предметами делится на две подзадачи с n — 1 предметами. Первая подзадача подразумевает, что предмет A был взят, вторая — что он не был взят:

Мы вычисляем верхнюю и нижнюю границы для этих двух подзадач. Каждая имеет нижнюю границу, равную 48: теперь мы знаем, что оптимальное решение находится между 48 и 52. Давайте рассмотрим подзадачу справа, поскольку у нее более интересные границы:

Крайняя левая подзадача имеет самую многообещающую верхнюю границу. Давайте продолжим наш анализ и выполним разбиение этой подзадачи:

Теперь мы можем сделать важные выводы. Выделенная цветом подзадача имеет нижнюю границу 49, которая равна ее верхней границе. Это означает, что оптимальная прибыль здесь должна равняться строго 49. Кроме того, обратите внимание, что 49 больше верхних границ во всех других ветвях, которые были проанализированы. Никакая другая ветвь не даст большую прибыль, чем 49, а значит, мы можем исключить их все из дальнейшего поиска.

Рациональное использование верхних и нижних границ позволило нам найти оптимальную прибыль, выполнив совсем немного вычислений. Мы динамически адаптировали наше пространство поиска по мере анализа возможностей.

Вот общие принципы работы метода ветвей и границ:

1) разделить задачу на подзадачи;

2) найти верхние и нижние границы каждой подзадачи;

3) сравнить границы подзадач всех ветвей;

4) выбрать самую многообещающую задачу и вернуться к шагу 1.

Если вы помните, стратегия поиска с возвратом (см. соответствующий раздел) тоже позволяет найти решение без обследования каждого возможного варианта. В случае поиска с возвратом мы исключаем пути, изучив каждый из них так далеко, как это возможно, и останавливаемся, когда нас устраивает решение. В случае же с методом ветвей и границ мы заранее определяем бесперспективные пути и не тратим впустую энергию на их обследование.

<p>Подведем итоги</p>

Решение задач, в сущности, представляет собой перемещение по пространству возможностей с целью найти правильный вариант. Мы узнали несколько способов, как это делается. Самый простой — полный перебор, то есть последовательная проверка каждого элемента в пространстве поиска.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги