Читаем Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных полностью

Поскольку научный процесс заключается в проверке предположений на реальных данных, неудивительно, что первоначальные объяснения часто оказываются ошибочными. Если бы не это, то вся затея с познанием была бы куда проще. И хотя имена великих ученых увековечены благодаря теориям, которые хорошо объясняли эмпирические явления, это не означает, что те же самые ученые не выдвигали ошибочных теорий. Зачастую теория признается ошибочной спустя какое-то время, когда обнаруживается нечто, о чем не было известно, или, иными словами, когда появляются новые данные.

Одним из самых ярых критиков Чарльза Дарвина был сэр Уильям Томсон, который впоследствии стал лордом Кельвином (и в честь которого названа шкала температур). Это был один из самых выдающихся ученых своего времени, в 22 года получивший статус профессора математики в Кембридже и похороненный в Вестминстерском аббатстве рядом с Исааком Ньютоном (а теперь рядом с ними и Стивен Хокинг). Его предшественники пытались вычислить возможную продолжительность существования Солнца, исходя из предположения, что оно сжигает некое ископаемое топливо, такое как уголь, но Кельвин понимал, что в этом случае процесс горения длился бы всего несколько тысяч лет. Поэтому он развил гипотезу Германа фон Гельмгольца о том, что Солнце постепенно сжимается и что гравитационная энергия, выделяемая при сжатии, преобразуется в тепло и свет. Но даже при этих условиях Солнце не могло гореть так долго, чтобы на Земле в ходе эволюции успела появиться жизнь. Поэтому он и утверждал, что теория эволюции Дарвина не соответствует данным.

Однако Кельвин был неправ. В его аргументации отсутствовали важные данные, которые стали доступны лишь позже. Это были данные, свидетельствующие о том, что в энергии Солнца лежит не химическое горение или гравитация, а совершенно иной механизм – термоядерный синтез.

В процессе термоядерного синтеза ядра атомов сливаются в одно более тяжелое ядро. При этом теряется некоторая масса, что сопровождается выделением энергии. Коэффициент преобразования таков, что крошечная масса превращается в гигантское количество излучаемой энергии как при взрыве водородной бомбы. Топливом для реакций ядерного синтеза являются дейтерий (атом водорода, в ядре которого есть нейтрон и протон, – обычное ядро водорода не имеет нейтрона) и радиоактивный тритий (атом водорода, содержащий в своем ядре два нейтрона и протон), который получают в ядерных реакторах путем бомбардировки изотопа литий-6 нейтронами. Чтобы понять, какое количество энергии при этом генерируется, представьте, что половина ванны воды и литий из одной единственной батареи вашего ноутбука могут дать столько же электричества, сколько получается при сжигании 40 т угля. Такой источник энергии мог бы разом решить энергетические проблемы человечества и позволил бы нам отказаться от электростанций, работающих на ископаемом топливе и загрязняющих окружающую среду: реакция термоядерного синтеза является «чистой», поскольку не образует радиоактивных отходов. У нас бы появился свой маленький источник солнечной энергии.

Но есть проблема: если мы хотим провести такую реакцию на Земле, то для сближения атомов нам необходимо огромное давление и сверхвысокая температура. В настоящее время наиболее эффективным методом получить и то и другое является размещение слоя дейтерия вокруг ядерной бомбы. Но ядерное оружие никак не назовешь удобным или практичным методом энергоснабжения! Поэтому в мире сейчас осуществляется целый ряд крупных исследовательских проектов, нацеленных на решение проблемы получения давления и температур, необходимых для управляемого термоядерного синтеза, а также проблемы удержания полученной в результате высокоэнергетической плазмы. Поскольку плазма прожигает любой материал, она должна находиться внутри идеально настроенного магнитного поля, которое не позволяет ей соприкасаться со стенками физического контейнера. Хотя над такими проектами работают уже давно, еще ни разу не удалось получить больше энергии, чем было затрачено. (По этой причине о термоядерном синтезе иногда в шутку говорят, что до овладения им всегда остается 30 лет.)

Кельвин ошибся, потому что ничего не знал о термоядерном синтезе, но были и такие, кого ввели в заблуждение неверные данные. В 1989 г. два физика, Мартин Флейшман и Стэнли Понс, объявили, что им удалось осуществить холодный ядерный синтез без нагрева исходных материалов до невероятно высоких температур, просто пропуская электрический ток через раствор лития в оксиде дейтерия. Поскольку оксид дейтерия – одна из форм воды (называемая также тяжелой водой), запасы которой потенциально не ограничены, это произвело бы революцию в обществе. Заявление физиков, естественно, вызвало большой резонанс, и лаборатории по всему миру поспешили повторить эксперимент. Некоторые из них, как казалось, преуспели – например, лаборатории в Москве и Техасе, – но большинство потерпело неудачу.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Управление проектами. Фундаментальный курс
Управление проектами. Фундаментальный курс

В книге подробно и систематически излагаются фундаментальные положения, основные методы и инструменты управления проектами. Рассматриваются вопросы управления программами и портфелями проектов, создания систем управления проектами в компании. Подробно представлены функциональные области управления проектами – управление содержанием, сроками, качеством, стоимостью, рисками, коммуникациями, человеческими ресурсами, конфликтами, знаниями проекта. Материалы книги опираются на требования международных стандартов в сфере управления проектами.Для студентов бакалавриата и магистратуры, слушателей программ системы дополнительного образования, изучающих управление проектами, аспирантов, исследователей, а также специалистов-практиков, вовлеченных в процессы управления проектами, программами и портфелями проектов в организациях.

Коллектив авторов

Экономика