Время может скрывать данные разными путями. Данные могут перестать соответствовать точному описанию мира, одни факты могут перестать регистрироваться за пределами периода наблюдений, а другие – потому что изменилась их природа, и т. д. Примерами могут служить медицинские исследования интервалов выживания, когда смерть пациента наступила после окончания периода наблюдения, а также данные по населению 20-летней давности, что может иметь сомнительную ценность для разработки текущей государственной политики.
●
Определения могут быть противоречивыми или со временем меняться, чтобы лучше соответствовать своему предмету и его назначению. Это может вызвать проблемы в случае с экономическими (и другими) временными рядами, когда данные, лежащие в их основе, могут перестать собираться. В более общем смысле, если люди по-разному определяют понятия, они вполне могут сделать и разные выводы. Одним из примеров является уровень преступности в Великобритании, который оценивается по полицейским записям и по опросам потерпевших, где определения преступления неодинаковы.
●
Обобщение данных по определению означает отбрасывание деталей. Если вы сообщаете только среднее значение, то не даете никакой информации о диапазоне данных или об асимметрии распределения. Среднее значение может скрыть тот факт, что некоторые значения могут очень сильно от него отличаться. В то же время обобщение может скрывать и тот факт, что все значения идентичны.
●
Ошибки измерения приводят к неопределенности истинного значения. Это легче всего понять, представив ситуацию, в которой диапазон погрешности измерения равен или больше, чем диапазон базовых истинных значений, – в этом случае наблюдаемое значение может сильно отличаться от истинного. Округление и нагромождение, верхний и нижний пределы избыточности и прочие эффекты вносят неопределенность в данные, скрывая их точные значения. Другой причиной неопределенности и неточности является связь данных, при которой идентифицирующая информация может храниться в разных формах, что приводит к ошибкам сопоставления.
●
Этот тип данных возникает, когда собранные значения начинают влиять на исходный процесс – как в случае раздувания оценок и пузырей на рынках акций. Это означает, что данные искаженно представляют базовую реальность и, возможно, с течением времени все больше отдаляются от нее.
●
Информационная асимметрия возникает, когда разные наборы данных хранятся у разных людей, и когда кто-то знает то, чего не знают другие. В качестве примера можно привести инсайдерскую торговлю, рынок «лимонов» Акерлофа и международную напряженность, вызванную ограниченной информацией о возможностях других государств.
●
Эти случаи предумышленного отбора определенных фактов являются особенно проблематичными. Они наблюдаются, когда люди намеренно скрывают данные или манипулируют ими с целью обмана или введения в заблуждение. Мы видели, что такое мошенничество может возникать в очень разных контекстах и отношениях.
●
Когда данные создаются искусственно, они могут вводить в заблуждение, как и в случае мошенничества. Однако существует метод симуляции, когда генерируются искусственные наборы данных, которые
●
Наборы данных всегда конечны. Это означает, что они имеют максимальное и минимальное значения, за пределами которых лежит неизвестность. Заявление о возможных значениях выше максимума или ниже минимума в наборе данных требует выдвижения предположений или получения информации из какого-то другого источника. Опасность, которую несет этот тип темных данных, мы рассмотрели на примере катастрофы шаттла Challenger, запуск которого произошел при температуре окружающей среды ниже диапазона температур предыдущих запусков.
Подведение итогов
Я не погрешу против истины, если скажу, что в последние столетия бурному развитию цивилизации сопутствует прогресс науки о данных. В конце концов, слово «данные» почти синонимично слову «факты», а именно на фактах базируется технический прогресс и просвещение, которые за последние века привели к росту экономики и развитию общества.