Уже к концу 1970 гг. вооруженные силы США располагали лазерными дальномерами, устройствами для подсвета целей, и оружием с лазерной системой высокоточного наведения бомб и снарядов по лучу и тд. В конце 60-х годов в дальнейших разработках типов мазеров были заложены основы создания высокоэнергстических лазеров, пригодных для использования в системах лазерного оружия. Были созданы:
в 1965 г. — фотодиссоциационный йодный лазер, разработанный фирмой UTRG (United Technology Research Center);
в 1968 г. — газодинамический СО.-лазер (фирма Avco Everett);
в 1969 г. — химический «водород- фтор» и «дейтерий-фтор» лазер (IIF/DF) разработки фирмы ITRC.
Газодинамический лазер (ГДЛ) стал первым высокомощным генератором лазерного излучения. Теоретические предпосылки для его создания в 1963 г. изложили Н.Г.Басов и A.П. Ораевский, высказавшие предположение о том, что инверсию населенностей в молекулярных системах можно создавать путем быстрого нагрева или охлаждения газа. Затем в 1965 г. И. Герл и А. Гертцберг предположили, что инверсию населенностей можно получить при быстром расширении первоначально нагретого газа в сверхзвуковом сопле Идею успешно использовала научно- исследовательская лаборатория Everett при создании мощного газодинамического лазера непрерывного действия, заработавшего в 1966 г. Это был первый газодинамический лазер на смеси CO2-N2-H2O. Он работал по принципу открытого цикла, выбрасывая в атмосферу отработанные азот и углекислый газ. Низкий КПД газодинамического лазера (менее 1 %) являлся серьезным недостатком в тех случаях, когда общее время работы превышало 20–30 с. так как требовался большой запас топлива и рабочего тела. В начале 1968 г. в лабораториях фирм Everett п United Aircraft Corp. были продемонстрированы экспериментальные ГДЛ, создающие в непрерывном режиме излучение мощностью в десятки киловатт. В апреле 1970 г. специалисты лаборатории Avco Everett сообщили о получении на ГДП излучения мощностью 30 кВт в одномодовом режиме и 60 кВт — в многомодовом.
В начале 1970-х гг. в США провели широкие исследования возможностей использования высокоэнергетических лазеров в военных целях для определения областей наиболее эффективного использования лазерного оружия. Выяснилось. что прожечь титановую обшивку толщиной 10 мм с помощью лабораторного макета лазера с выходной мощностью несколько сот киловатт удается менее чем за 1 с. Эффект воздействия лазерного излучения (ЛИ) на "воздушную" цель (с учетом обдува) моделировался воздушной струей со скоростью потока М=1, направленной перпендикулярно распространению лазерного пучка. Было отчетливо видно, что жидкий металл, увлекаемый воздушным потоком, оставлял на поверхности цели кратер овальной формы, однако фактически форма прожигаемого отверстия была круглой. Наиболее трудно разрушаемой частью цели являлась ее металлическая обшивка, а самыми чувствительными к воздействию ЛИ оказались материалы, из которых изготовлены элементы электронно-оптических датчиков. Обычно поверхностного разрушения материала окна достаточно, чтобы вывести из строя датчик.
Порог поражения воздушно-космических целей, таких как самолеты, крылатые ракеты и стенки топливных баков существовавших МНР с ЖРД согласно материалам американской печати. оценивали в 0.5–1.0 Дж/см. Боевую устойчивость МБР с двигателями на твердом топливе посчитали более высокой из-за большей толщины и прочности стенок. Предполагалось, что порог поражения можно повысить до 10–20 кДж/см за счет применения отражающих п абляционных покрытий. Дальнейшее его повышение осложнялось из-за весовых ограничений на данные элементы конструкции. Устойчивость к поражению покрытия головных частей (I'M) МБР была существенно выше, поскольку их рассчитывали на большие тепловые нагрузки при входе в атмосферу. В качестве примера можно отмстить. что разрабатывавшийся для проекта «Галилей» зонд, входящий в атмосферу Юпитера, должен выдерживать нагрузки порядка 100 МДж/см в течение 2-х минут. Поэтому сделали вывод, что уничтожение МБР лазерным оружием наиболее эффективно на активном участке траектории. В расчетах
учитывали, что время прохождения этого участка составляет около 100 с.
В основном эти исследования показали. что в тех областях, где лучевое оружие могло быть практически применено уже в скором времени, по критерию "стоимость-эффективность" обычные виды оружия оказывались его серьезными конкурентами. В частности. это относилось к тактическим средствам ПВО кораблей и сухопутных войск. Там, где использование обычных видов оружия было затруднительным или новее невозможным, для высокоэнергетических лазеров также возникал ряд сложных технических проблем. Это относилось к таким областям, как защита бомбардировщиков, ПРО и ПКО. Министерство обороны (МО) США субсидировало следующие исследования по изучению возможностей применения лучевого оружия:
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное