Читаем Техника и вооружение 2003 09 полностью

Физически максимально возможная скорость «полета» лучевых «снарядов» — скорость света -300000 км/с, при которой время задержки пренебрежимо мало — 3,3 мке/км. Единственный вид оружия, обладающий подобной скоростью, — лазерное или пучковое оружие. Но пучки заряженных частиц в атмосфере распространяться не могут, а вот лазерное оружие (ЛО) практически без задержки поражает цель. Время эффективного воздействия составляет от 0,1 с до нескольких секунд и необходимо для накопления поглощенной энергии излучения, чтобы поразить цель. Это время пренебрежимо мало по сравнению с временем полета отдельных снарядов. Как правило, в системе ЛО сам лазер жестко фиксируется, а для отслеживания целей, наведения и перенацеливания луча используют поворотное зеркало или систему зеркал с минимальной массой. Благодаря этому время наведения значительно сокращается.

На типичных для космических систем лазерного или пучкового оружия дальностях в тысячи километров время распространения поражающих факторов от источника до цели составляет сотые доли секунды, за которые цель сможет переместиться всего лишь па несколько десятков метров (На космических дальностях -1000 км и более угол упреждения составляет 0.5–1,0.10- 5 рад). Этим практически исключается возможность маневрирования цели для ухода от поражения и значительно упрощается задача прогнозирования траектории цели по сравнению с обычными средствами противоракетной (ПРО) и противокосмической обороны (ПКО).

К преимуществам систем ЛО следует отнести:

— ведение «огня» «прямой наводкой» в связи с отсутствием углов упреждения:

— быстрый (практически мгновенный) перенос поражающей энергии от источника к цели и такое же мгновенное получение данных об эффективности «стрельбы»;

— оперативный выбор точки прицеливания и наблюдения (оптимизация эффективности управления «огнем»):

— большая точность поражения малоразмерной скоростной цели:

— довольно большой (по сравнению с другими видами оружия) диапазон достижения цели без существенной задержки доставки энергии или уменьшения эффективности;

— эффективное ведение огня при круговом обзоре (360 град.), минимум затрат времени на изменение точки прицеливания как по горизонтали (360 град.), так и по вертикали, высокая скорострельность, точность попадания без существенного изменения при длительном прицеливании;

— низкая стоимость «выстрела» (порядка 500 долл.). минимальный разброс при прицеливании в одну точку.

Но, как известно, «бесплатный сыр бывает только в мышеловке», так и система лазерного оружия имеет свои недостатки и проблемы, к которым относятся:

— ограниченная эффективность действия по бронированным целям, хотя системы ЛО весьма эффективны против их электронно-оптических датчиков и могут быть успешно использованы как целеуказатели против ракет с инфракрасными головками самонаведения (ПК ГОН);

— максимальная точность сопровождения цели со свободной линией прицеливания возможна только во время боевой работы;

— противодействие со стороны противника;

— использование ЭВМ в боевых условиях;

— обеспечение топливом и энергией и их размещение, особенно для мобильных систем.

Еще задолго до того, как реальные мощности лазеров стали приближаться к требуемым для решения чисто боевых задач, лазеры нашли широкое применение в разнообразных оптических информационных системах, в том числе и военного назначения. В 1960 г. Т.Н. Мэйман на фирме Hughes Aircraft впервые продемонстрировал работу рубинового лазера, и сразу же начались интенсивные разработки различных лазеров для широкого военного и промышленного применения. Вскоре появились:

в 1961 г. — гелий-неоновый (HeNe) лазер. генерирующий в красной области спектра;

в 1962 г. — полупроводниковый инжекционный ОаАs-лазер:

в 1964 г. — СО — лазер и твердотельный лазер на стекле с неодимом (Nd: YAG).

Экспериментальная лазерная система тактического оружия MTU на гусеничном бронетранспортере LVTP-7 морской пехоты. На вставке изображен лазерный целеуказатель фирмы Hughes Установленный на танке или самолете, он направляет лазерный пучок на цель — тактическую ракету, оснащенную ГСН. которая наводится на цель по отраженному лазерному излучению

Мобильная экспериментальная лазерная система оружия MTU Армии США 1 — башня для размещения оптической системы прицеливания и слежения: 2 — РЛС обнаружения цели; 3 — жалюзи системы охлаждения лазера

Испытания лазерной установки MTU по вертолету

Перейти на страницу:

Похожие книги

Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище
Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище

Настоящее издание посвящено малоизученной теме – истории Строгановского Императорского художественно-промышленного училища в период с 1896 по 1917 г. и его последнему директору – академику Н.В. Глобе, эмигрировавшему из советской России в 1925 г. В сборник вошли статьи отечественных и зарубежных исследователей, рассматривающие личность Н. Глобы в широком контексте художественной жизни предреволюционной и послереволюционной России, а также русской эмиграции. Большинство материалов, архивных документов и фактов представлено и проанализировано впервые.Для искусствоведов, художников, преподавателей и историков отечественной культуры, для широкого круга читателей.

Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев

Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное