Математики Фернандо Чорни, Пабло Колл и Лаура Пеццатти вместе со мной провели простой тест, который может иметь важные последствия для педагогической практики. Мы поставили математическую задачу перед сотнями студентов подготовительного курса, которые готовились к экзамену, разделив их на две группы. Первой группе просто предложили решить задачу, как обычный экзаменационный тест. Во второй группе студентов попросили сначала переписать формулировку вопроса своими словами, а потом решить задачу.
Казалось бы, дополнительное задание для второй группы была отвлекающим фактором, означавшим, что у них меньше времени сосредоточиться на решении основной задачи. Но, с нашей точки зрения, это давало им важное преимущество: перевод формулировки на собственный язык[94]. Перемена оказалась разительной: те, кто переписал формулировку, улучшили свой результат почти на 100 % по сравнению с теми, кто решал задачу так, как она была составлена.
Параллело-что?
Теперь посмотрим глазами ребенка на царство геометрии, чтобы понять: процесс переписывания понятий на свой внутренний язык не ограничивается словами. Для понимания того, что геометрия не очень ладит со словами, достаточно прочитать определение параллельности: «Параллельными считаются линии, равноудаленные от другой линии или плоскости и не пересекающиеся с ней, независимо от длины». Определение перегружено абстрактными понятиями: линия, плоскость, равноудаленные. В других подобных определениях присутствует понятие бесконечности. Само слово «параллельные» неудобно для произношения. Кому это понравится? Однако когда мы видим несколько пересекающихся линий между параллельными, они сразу же привлекают взгляд. Наша зрительная система формирует интуитивные догадки, позволяющие распознавать геометрические понятия еще до того, как они оформлены в слова.
Трехлетние дети уже могут различить две непараллельные линии среди множества параллельных. Пожалуй, они неспособны объяснить понятие, а тем более назвать его, но они понимают, что эти линии чем-то отличаются. То же самое происходит со многими другими геометрическими понятиями: прямой угол, замкнутые или открытые фигуры, количество сторон, симметрия и так далее.
Есть два простых способа выявить универсальную характеристику, не зависящую от обучения. С одной стороны, можно наблюдать за детьми до того, как они подвергнутся заметному культурному воздействию; с другой – поехать туда, где процесс обучения сильно отличается от наших представлений. Это своеобразная антропология мышления.
В том, что касается математики, одна из наиболее исследованных культур – народ мундуруку, живущий в глубине джунглей бразильской Амазонии. У мундуруку богатая и древняя культура, а их математические представления сильно отличаются от тех, что мы унаследовали от греков и арабов. К примеру, у них нет слов для обозначения большинства чисел. Есть лишь составное слово, обозначающее единицу (
Их язык также небогат абстрактными геометрическими терминами. Означает ли это, что в области геометрической интуиции община мундуруку сильно отличается от школьников Бостона? Ответ отрицательный. Психолог Элизабет Спелке обнаружила, что, когда геометрические задачи представлены визуально и без использования языка, дети мундуруку и дети из Бостона показывают сходные результаты при их решении. Задача, легко решаемая ребенком из Бостона, например распознавание прямых углов, окажется простой и для ребенка из племени мундуруку. Более трудные вещи, такие как распознавание симметричных элементов среди несимметричных, оказываются трудными для обеих групп детей.
Математическая интуиция свойственна всем культурам и проявляется с младенческого возраста. Математика построена на догадках о том, что мы видим: большое и малое, близкое и далекое, прямое и кривое. Она связана с движением и пространством. Почти во всех культурах числа имеют линейную прогрессию. Сложение представляет собой движение по этой линии (обычно вправо), а вычитание – такое же движение в противоположном направлении. Многие из этих догадок – врожденные и развиваются спонтанно, без необходимости в формальных инструкциях. Позже формальное образование образует надстройку на комплексе уже сформированных догадок.