Когда квантовое устройство разложения на множители раскладывает 250-значное число, количество интерферирующих вселенных будет порядка 10500, т. е. десять в степени 500. Это ошеломляюще огромное число — причина того, почему алгоритм Шора делает разложение на множители легкорешаемой задачей. Я сказал, что этот алгоритм требует выполнения всего нескольких тысяч арифметических операций. Безусловно, я имел в виду несколько тысяч операций в каждой вселенной, которая вносит вклад в ответ. Все эти вычисления выполняются параллельно в различных вселенных и делятся своими результатами через интерференцию.
Возможно, вам интересно, как мы сможем убедить своих партнёров из 10500 или около того вселенных начать работать над нашей задачей разложения на множители. Разве у них нет своих собственных задач, чтобы задействовать компьютеры? Нет — и нам не нужно их убеждать. Алгоритм Шора изначально действует только в наборе вселенных, идентичных друг другу, и вызывает в них отличия только в пределах устройства разложения на множители. Поэтому мы, указавшие число, которое нужно разложить на множители, и ждущие ответа, идентичны во всех интерферирующих вселенных. Несомненно, существует много других вселенных, в которых мы задали другие числа или вообще не построили устройства разложения на множители. Но эти вселенные отличаются от нашей слишком большим количеством переменных — или, точнее, переменными, которые не настроены для правильного взаимодействия посредством запрограммированного алгоритма Шора, — и потому они не интерферируют с нашей Вселенной.
Рассуждения, приведённые в главе 2, будучи применены к любому явлению интерференции, разрушают классическую идею о единственности Вселенной. Логически возможность сложных квантовых вычислений ничего не добавляет к вопросу, на который уже нельзя ответить иначе. Но эта возможность оказывает дополнительное психологическое влияние. Алгоритм Шора очень сильно повышает убедительность этих рассуждений. Для тех, кто всё ещё склонен считать, что существует лишь одна Вселенная, я предлагаю следующий вызов: объясните, как работает алгоритм Шора. Я имею в виду не предсказание, каковы будут результаты его работы, поскольку для этого достаточно решить несколько непротиворечивых уравнений. Я прошу вас дать объяснение. Когда алгоритм Шора разлагает на множители число, задействовав примерно в 10500 больше вычислительных ресурсов, чем те, что можно увидеть воочию, — где же это число раскладывается на множители?
Во всей видимой Вселенной существует всего около 1080 атомов — число ничтожно малое по сравнению с 10500. Таким образом, если бы видимая Вселенная была пространством физической реальности, физическая реальность даже отдалённо не содержала бы ресурсов, достаточных для разложения на множители такого большого числа. Кто же тогда разложил его на множители? Как и где выполнялись вычисления?
Я говорил о традиционных типах математических задач, которые квантовые компьютеры смогли бы выполнить быстрее существующих машин. Но для квантовых компьютеров открыт и дополнительный класс новых задач, которые ни один классический компьютер не способен решить вообще. По странному совпадению, одна из первых найденных задач такого типа также была связана с криптографией с открытым ключом. На этот раз она состояла не во «взломе» существующей системы, а в реализации новой абсолютно надёжной системы квантовой криптографии. В 1989 году в компании IBM Research в Йорктаун-Хайтс, штат Нью-Йорк, в кабинете теоретика Чарльза Беннетта был построен первый рабочий квантовый компьютер. Это был специализированный квантовый компьютер, состоящий из двух квантовых криптографических устройств, спроектированных Беннеттом и Жиллем Брассаром из Университета Монреаля. Этот компьютер стал первой машиной, выполнившей нетривиальные вычисления, которые не смогла бы выполнить ни одна машина Тьюринга.