Эта вспомогательная квантовая аппаратура, в сущности, тоже была бы компьютером! Например, в качестве такого устройства мог бы работать интерферометр, и, как любой другой физический объект, его можно было бы считать компьютером. Сегодня мы назвали бы его специализированным квантовым компьютером. Мы «программируем» его, устанавливая зеркала так, чтобы создать определённую геометрию, и затем направляем один фотон на первое зеркало. В эксперименте с неслучайной интерференцией фотон всегда выйдет в одном конкретном направлении, определяемом установкой зеркал, и мы можем интерпретировать это направление как выдачу результата вычислений. В более сложном эксперименте с несколькими взаимодействующими частицами такое вычисление запросто могло бы, как я уже объяснил, стать «труднорешаемым». Но поскольку мы можем получить результаты, просто проведя этот эксперимент, значит, его всё-таки нельзя назвать действительно трудным. Нам теперь следует быть осторожнее в вопросах терминологии. Очевидно, что существуют вычислительные задачи, «труднорешаемые», если пытаться справиться с ними на любом существующем компьютере, но переходящие в разряд легкорешаемых, если в качестве специализированных компьютеров мы могли бы использовать квантово-механические объекты. (Обратите внимание, что возможность использования квантовых явлений для выполнения вычислений подобным образом обусловлена тем, что эти явления не подвержены хаосу. Если бы результат вычислений был функцией, чрезмерно чувствительной к начальному состоянию, «запрограммировать» такое устройство, установив его в подходящее начальное состояние, было бы невыполнимой задачей.)
Такое использование вспомогательного квантового устройства можно было бы посчитать жульничеством, так как очевидно, что любую среду гораздо проще создать, имея доступ к её запасной копии для проведения измерений во время воспроизведения! Однако Фейнман предположил, что нет необходимости в использовании точной копии воспроизводимой среды: можно найти вспомогательное устройство, конструкция которого гораздо проще, но интерференционные свойства тем не менее будут аналогичны свойствам воспроизводимой среды. Оставшуюся часть работы способен осуществить обычный компьютер, опираясь на аналогию между вспомогательным устройством и воспроизводимой средой. Фейнман ожидал, что эта задача будет легкорешаемой. Более того, он предполагал — как оказалось, правильно, — что все квантово-механические свойства любой воспроизводимой среды можно смоделировать с помощью вспомогательных устройств конкретного вида, который он указал (а именно, совокупности вращающихся атомов, каждый из которых взаимодействует со своими соседями). Он назвал весь класс таких устройств универсальным квантовым симулятором.
Однако этот симулятор не является отдельной машиной, что необходимо для признания его универсальным компьютером. Взаимодействия, которым должны были бы подвергнуться атомы симулятора, нельзя было задать раз и навсегда, как в универсальном компьютере, их нужно было переустраивать для каждой воспроизводимой среды. Однако суть универсальности состоит в том, что должна быть возможность запрограммировать отдельную машину, точно определённую раз и навсегда, для выполнения любого возможного вычисления или воспроизведения любой возможной среды. В 1985 году я доказал, что в рамках квантовой физики существует универсальный квантовый компьютер. Это доказательство было абсолютно прямым. Всё, что мне пришлось сделать, — это сымитировать построения Тьюринга, но воспользоваться квантовой теорией для определения лежащей в их основе физики, а не классической механикой, которую неявно предполагал Тьюринг. Универсальный квантовый компьютер может выполнить любое вычисление, которое может выполнить любой другой квантовый компьютер (или любой компьютер Тьюринга), а также воспроизвести любую конечную физически возможную среду в виртуальной реальности. Более того, с тех пор было показано, что время и остальные ресурсы, которые ему понадобятся для осуществления всего этого, не будут увеличиваться экспоненциально с ростом размеров или детальности воспроизводимой среды, так что соответствующие задачи будут легкорешаемыми по критериям теории сложности.