Читаем Структура реальности. Наука параллельных вселенных полностью

Один фотон входит в интерферометр сверху слева, как показано на рис. 9.3. Во всех вселенных, где проводят эксперимент, фотон и его партнёры движутся к интерферометру по одной и той же траектории. Следовательно, эти вселенные идентичны. Но как только фотон попадает на полупрозрачное зеркало, первоначально идентичные вселенные становятся различными. В половине из них фотон проходит через зеркало и движется вправо вдоль верхней стороны интерферометра. В остальных вселенных фотон отражается от зеркала и идёт вниз вдоль левой стороны интерферометра. Затем эти варианты фотона в разных группах вселенных попадают в обычные зеркала справа сверху и слева снизу соответственно и отражаются от них. Таким образом, в конце они одновременно попадают на полупрозрачное зеркало справа снизу и интерферируют друг с другом. Не забывайте, что мы запускали в аппарат только один фотон, и в каждой вселенной по-прежнему находится только один фотон. Во всех вселенных этот фотон теперь попал в правое нижнее зеркало. В половине вселенных он подошёл к этому зеркалу слева, в другой половине — сверху. Между разновидностями фотона из этих двух групп вселенных произошла сильная интерференция. Суммарный эффект зависит от точной геометрии ситуации, но на рис. 9.3 изображён тот случай, когда во всех вселенных фотон в конце движется вправо сквозь зеркало, и ни в одной вселенной он не проходит и не отражается вниз. Таким образом, в конце эксперимента все вселенные так же идентичны, как и в начале. Они отличались и интерферировали друг с другом лишь краткую долю секунды в промежуточном состоянии.

Это замечательное явление неслучайной интерференции — почти такое же неизбежное свидетельство существования мультиверса, как и картина теней. Так происходит из-за того, что описанный мной результат несовместим ни с одной из двух возможных траекторий движения частицы в одной вселенной. Если мы, например, направим фотон, идущий вправо вдоль нижнего плеча интерферометра, он может пройти сквозь второе полупрозрачное зеркало, как и в эксперименте с интерференцией фотона. Но может и не пройти — иногда он будет отклоняться вниз. Точно так же фотон, идущий вниз, вдоль правого плеча интерферометра, может отклониться вправо, как в эксперименте с интерференцией, или просто пройти прямо вниз. Таким образом, на какую бы траекторию вы ни направили один фотон внутри аппарата, направление его выхода будет случайным. Результат можно предсказать только в том случае, когда между двумя траекториями произойдёт интерференция. Следовательно, непосредственно перед окончанием эксперимента с интерференцией в аппарате присутствует нечто, что не может быть одним фотоном на одной траектории: например, это не может быть просто фотон, который перемещается вдоль нижнего плеча интерферометра. Там должно быть нечто ещё, что мешает ему отразиться вниз. Там не может быть и просто фотон, который перемещается вдоль правого плеча интерферометра; там должно быть нечто ещё, что мешает ему двигаться прямо вниз, как это могло бы произойти в некоторых случаях, если бы он был там один. Как и в случае с тенями, можно придумать другие эксперименты, показывающие, что это «нечто ещё» обладает всеми свойствами фотона, который перемещается вдоль другой траектории и интерферирует с видимым нами фотоном, но ни с чем другим в нашей Вселенной.

Поскольку в этом опыте присутствуют только два различных вида вселенных, вычисление того, что произойдёт, займёт всего в два раза больше времени, чем в случае, если бы частица подчинялась классическим законам — скажем, если бы мы вычисляли траекторию движения бильярдного шара. Вряд ли коэффициент два превратит такую вычислительную задачу в труднорешаемую. Однако мы уже видели, что довольно легко достичь и гораздо более высокой степени многообразия. В экспериментах с тенями один фотон проходит через перегородку с несколькими маленькими отверстиями и попадает на экран. Предположим, что в перегородке тысяча отверстий. На экране есть места, куда может попасть фотон (и попадает в некоторых вселенных), и места, куда он попасть не может. Чтобы вычислить, может ли конкретная точка экрана принять фотон или нет, мы должны вычислить эффекты взаимной интерференции вариантов фотона из тысячи параллельных вселенных. В частности, мы должны вычислить тысячу траекторий движения фотона от перегородки до данной точки экрана, затем вычислить влияния этих фотонов друг на друга так, чтобы определить, не помешают ли все они друг другу достигнуть этой точки. Таким образом, мы должны выполнить примерно в тысячу раз больше вычислений, чем нам пришлось бы, если бы мы определяли, попадёт ли в конкретную точку классическая частица.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука