Глядя на это число, любой скажет, что оно очень велико, но насколько велико?
В экспоненциальной нотации используются степени числа 10. Запись 10n означает число, начинающееся с единицы, за которой следуют
Любое произвольное числовое значение может быть записано как число в диапазоне от 1 до 10, умноженное на десять в какой-то степени. Число 100 записывается как 102, в то время как число 135 можно представить в виде произведения 1,35∙100 и в экспоненциальной нотации записать как 1,35∙102. Второй сомножитель в этой записи называется
Для физика порядок числа является наиболее важной характеристикой, поскольку он показывает масштаб явления, и экспоненциальная запись в этом отношении очень удобна, не говоря уже о том, что она просто короче. Гораздо легче воспринять число в форме 1,45962∙1013, чем 1 459 620 000 000 или «один триллион четыреста пятьдесят девять миллиардов шестьсот двадцать миллионов». Я рискну сделать ещё более сильное утверждение: числа, представляющие физический мир, имеют смысл только тогда, когда они записаны в экспоненциальной форме.
Есть и другие несомненные преимущества экспоненциальной записи. В частности, она сильно упрощает манипуляции с числами. Например, вы хотите перемножить два числа, скажем, 100 и 100. Традиционная запись выглядит так: 100×100 = 10 000. В экспоненциальной форме нахождение произведения 100×100 сведётся к следующей манипуляции: 102х102 = 10(2+2) = 104 — фактически, мы заменяем умножение сложением. Аналогично и с операцией деления — вместо 1000:100 = 10 мы пишем: 103:102 = 10(3–2)= 101. Деление заменяется вычитанием. Эти простые правила оперирования со степенями десяти избавляют нас от необходимости постоянно считать количество знаков в перемножаемых числах, и единственное, для чего вам может понадобиться калькулятор, это для перемножения мантисс, то есть левых частей в экспоненциальной записи. Но поскольку мантиссы находятся в диапазоне от 1 до 10, то, помня таблицу умножения 10×10, вы всегда сможете сделать грубую прикидку результата в уме.
В мои задачи не входит научить вас искусству устного счёта, вместо этого я расскажу, как производить численные оценки. Если упрощение картины мира предполагает приближённое её описание, то экспоненциальная форма представления чисел лучше всего подходит для приблизительной оценки каких-то величин с точностью до порядка. Она позволяет быстро получить ответы на вопросы, которые при другом подходе были бы практически неразрешимыми. Грубые оценки помогают убедиться, что мы находимся на правильном пути. Они также позволяют сберечь время и силы, оберегая нас от выполнения ненужной работы. Одна известная байка рассказывает о некоем аспиранте, который потратил массу усилий, чтобы решить сложную систему уравнений, описывающую эволюцию Вселенной, чтобы получить в итоге один важный параметр. И на защите диссертации выяснилось, что этот же параметр получается за пару минут из общих соображений путём простой оценки.