Основные черты квантовой механики нагляднее всего демонстрирует так называемый «эксперимент с двумя прорезями». Суть эксперимента в том, что луч света или поток электронов направляют сквозь две узкие прорези в стене на экран на противоположной стороне. Вариант со световым лучом называется «опыт Юнга» и, вероятно, знаком читателям по школьным урокам физики. Свет на экране образует характерную череду темных и светлых полос, поскольку электромагнитные волны, проходящие сквозь прорези, интерферируют друг с другом. Там, где максимумы обеих волн складываются, возникает светлая полоса, а там, где максимум одной накладывается на минимум другой, экран остается темным.
Если принять, что свет – это волна, такая интерференция понятна. Точно такой же эффект получится, если пустить волны по поверхности воды и поставить на их пути преграду с двумя щелями. Но разобраться, почему так себя ведут электроны, которые мы привыкли считать твердыми частицами вроде крошечных бильярдных шаров, гораздо труднее. Тем не менее картина с пучком электронов точно такая же.
Но самое странное даже не это: если пропускать электроны в щели по одному, на экране (почти таком же, как телеэкран) проступает точно такой же рисунок из темных и светлых полос. Почему это странно? Подумайте, что происходит, когда электроны проходят только через одну прорезь. Тогда на экране появится не полосатый узор, а просто яркое пятно напротив прорези. Именно это мы и увидим, если закроем одну прорезь и пустим электроны сквозь другую. «Очевидно», что каждый электрон может пройти только в одну прорезь. Но когда открыты обе прорези, то даже если электроны в ходе эксперимента испускают по одному, мы видим на экране за прорезями не два ярких пятна, а характерные полосы, как в опыте Юнга.
Перед нами чистейший пример корпускулярно-волнового дуализма (см. главу 2), лежащего в основе квантового мира. Когда электрон попадает на экран, то оставляет точечку света, – собственно, именно этого и ждешь от крошечной «частички-мячика». Но когда накапливаются тысячи точечек света, они образуют полосатый узор, как будто сквозь обе прорези пропущены волны. То есть каждый отдельный электрон ведет себя как волна, которая проходит одновременно через обе прорези, интерферирует сама с собой, решает, к какой части полосатого узора она относится, и направляется туда, а на место прибывает уже как частица, оставляющая точечку света.
Если у вас все это не укладывается в голове, не отчаивайтесь. Нильс Бор, один из пионеров квантовой революции, говорил, что «если квантовая теория тебя не огорошила, значит, ты ее не понял», а Фейнман – вероятно, величайший физик-теоретик послевоенного времени – заходил даже дальше и поговаривал, что квантовую механику не понимает никто. Главное – не понимать, как частице удается так странно себя вести (и как частица, и как волна), а разработать набор формул, которые точно описывают происходящее и дают физикам возможность рассчитать, как поведут себя электроны, световые волны и все прочее. Фейнман придерживался именно такого, сугубо прагматического, подхода к «пониманию» процессов в квантовом мире, потому и предложил свою «сумму историй», а Хокинг в конце 1970-е применил ее к исследованиям Большого взрыва.
Фейнман говорил, что объект вроде электрона нужно представлять себе не как простую частицу, которая проходит по какой-то конкретной траектории из пункта А в пункт Б (например, сквозь одну из прорезей в опыте Юнга), а как частицу, которая проходит по всем возможным траекториям из пункта А в пункт Б в пространстве-времени. По одним траекториям («историям») «классической» частице проходить легче, а по другим труднее, и уравнения Фейнмана это учитывают: в них каждой траектории приписывается вероятность, которую можно рассчитать согласно законам квантовой механики.
Эти вероятности интерферируют с вероятностями из соседних «мировых линий» – примерно как волны на поверхности пруда интерферируют друг с другом. А значит, можно вычислить, по какой именно траектории пройдет частица, если суммировать все вероятности всех траекторий (вот почему этот подход называется еще «интегрированием по траекториям»).
В подавляющем большинстве случаев различные вероятности почти полностью обнуляют друг друга, и остается всего несколько траекторий, зато надежных. Это происходит с траекториями, соответствующими движению электрона вокруг ядра атома. Электрон не может двигаться куда хочет, поскольку некоторые вероятности обнуляются. Ему позволено двигаться по одной из нескольких орбит вокруг ядра, где вероятности подкрепляют друг друга.
Опыт с двумя прорезями необычен тем, что дает электронам возможность выбирать из двух равновероятных наборов траекторий – по одному в каждую прорезь; именно поэтому в нем так ярко проявляется имманентная странность квантового мира. У одного лишь Хокинга хватило дерзости применить интегрирование по траекториям к расчету истории не одного электрона, а всей Вселенной, но и ему пришлось начинать с малого – с сингулярностей черных дыр.