В 1960-е годы были сделаны четыре открытия – два в изучении черных дыр и два в космологии, – которые возродили интерес к сингулярным решениям уравнений Эйнштейна. В результате исследований, на которые вдохновили ученых эти открытия, а особенно – плодов сотрудничества Хокинга и Пенроуза, – физики в начале 1970-х поняли, что в силах примириться с немыслимым: оказывается, следствие из ОТО, согласно которому во Вселенной могут существовать точки бесконечной плотности, то есть сингулярности, вовсе не означает, что в уравнения Эйнштейна вкралась ошибка. Сингулярности и правда могут существовать. А для тех, кто отчаянно цеплялся за прежнюю картину мироздания, все складывалось еще хуже: похоже, вся Вселенная – тоже черная дыра, на которую мы смотрим изнутри горизонта Шварцшильда, а значит, в начале времен вполне могла быть сингулярность, не скрытая от нас, – «голая» сингулярность.
Все началось в 1963 году, когда были открыты квазары. История квазаров на самом деле началась в последний день 1960 года. В 1950-е астрономы при помощи телескопов, регистрировавших не видимый свет, а радиоволны, обнаружили во Вселенной много объектов, испускавших радиошум. Некоторые такие объекты были видны как яркие галактики и получили название радиогалактик, но были и такие, которые не удавалось отождествить ни с какими известными видимыми объектами. Потом, в конце 1960 года, американский астроном Аллан Сэндидж сообщил, что один из радиоисточников, открытых во время обзора, проведенного кембриджскими радиоастрономами (так называемый источник 48), можно отождествить не с далекой галактикой, а с яркой звездой. В ближайшие несколько лет были обнаружены и другие радиозвезды, но никто не мог объяснить, как им удается испускать радиошум. Затем, уже в 1963 году, Мартен Шмидт, который работал в обсерватории Маунт-Паломар в Калифорнии, объяснил, почему другой такой объект – 3C 273 – обладает весьма необычным спектром.
Состав любой звезды (и вообще любого горячего объекта) выдает природа испускаемого ей света. Каждый элемент – водород, гелий, кислород – поглощает и испускает энергию лишь с конкретными длинами волн из-за квантовых эффектов, о которых мы говорили во второй главе. Поэтому, когда свет от звезды или галактики при помощи призмы разлагается на спектр, мы видим, что этот спектр пересекают темные и светлые полосы разной длины волн, которые соответствуют атомам тех или иных элементов в атмосфере звезды (или звезд, из которых состоит галактика). Спектральные линии индивидуальны, как отпечатки пальцев, и у атомов одного элемента всегда один и тот же набор длин волн. Однако астрономы уже знали, что у галактик вне Млечного Пути эти спектральные линии слегка сдвинуты к красному концу спектра. Знаменитое «красное смещение» вызвано расширением Вселенной, которое растягивает пространство, а следовательно, и длину волн света, идущего к нам от далекой галактики. Именно открытие «красного смещения» и подсказало астрономам, что Вселенная расширяется, однако этому поначалу не поверил даже сам Эйнштейн.
То, что свет от 3C 273 тоже подвергся красному смещению (собственно, это и открыл Мартен Шмидт), было неудивительно, однако в 1963 году астрономы впервые увидели смещение таких масштабов – почти на 16 % к красному пределу. Обычно красные смещения у галактик значительно меньше, примерно 1 % (то есть 0,01). Но, когда стало ясно, что возможны даже такие огромные смещения, ученые пересмотрели остальные «радиозвезды», и оказалось, что у всех у них такие же большие смещения, а иногда даже больше. Например, у источника 3C 48 красное смещение составляет 0,368 (почти 37 %), то есть в два с лишним раза больше, чем у 3C 273, а рекордное красное смещение на сегодня – больше четырех, то есть первоначальная длина волны света от самых далеких известных нам квазаров растянута в четыре с лишним раза.
В расширяющейся Вселенной красное смещение служит мерой расстояния (чем дальше источник доходящего до нас света, тем сильнее этот свет растянут расширением Вселенной). Так что эти объекты, как выяснилось, вообще не звезды, а неизвестное ранее явление – объекты, которые выглядят как звезды, но находятся очень далеко, в большинстве случаев даже дальше, чем известные галактики. Вскоре они получили название «квазары» – квази-звездные объекты.