В 1980 году, когда Хокинг читал лекцию на церемонии вступления в должность, интерес ученых привлекло целое семейство возможных теорий квантовой гравитации, получивших общее название «супергравитация). Одна версия теории супергравитации называется «N = 8», поскольку она не просто предсказывает существование одного типа гравитонов, но требует восьми дополнительных разновидностей частиц – гравитино (а заодно в ней есть еще 154 разновидности других пока не открытых частиц). Казалось бы, такой россыпи частиц как-то многовато для любимой теории, и так и есть, но супергравитация и в самом деле – большой шаг вперед по сравнению с предыдущими попытками сформулировать квантовую теорию гравитации, для которых требовалось бесконечно много «новых» частиц. Более того, изо всех вариаций на тему супергравитации N = 8 – единственная теория, которая естественно вписывается в четыре измерения (три пространственных плюс время) и содержит конечное число частиц. Так что в 1980 году Хокинг, конечно, голосовал за нее как за теорию, у которой больше всех шансов на успех.
Но прошло еще несколько лет, и все изменилось. К середине 1980-х интерес к супергравитации смело настоящее цунами сторонников принципиально другой гипотезы – теории струн. Главная идея теории струн заключается в том, что сущности, которые мы привыкли считать точками (электроны и кварки), на самом деле линии – крошечные «струны». Струны и правда очень малы: чтобы обхватить протон по диаметру, нужно соединить 1020 струн в одну линию. Они могут быть открытыми, со свободными концами, и замкнутыми в петельки. Некоторые теоретики полагают, что колебания и взаимодействия струн могут объяснить многие особенности физического мира.
Теория струн зародилась в конце 1960-х, когда с ее помощью пытались описать сильное взаимодействие. Однако успех квантовой хромодинамики оттеснил раннюю версию теории струн на обочину, хотя некоторые математики иногда играли с ней, в основном из интереса к вычислениям, чем в надежде совершить прорыв нашем в понимании фундаментальных сил природы. К середине 1980-х двое ученых, Джоэль Шерк из Парижа и Джон Шварц из Калифорнийского технологического института, нашли способ описать гравитацию при помощи теории струн. Но на это их коллеги, в сущности, ответили: «Да кому это нужно?» Тогда большинство исследователей гравитации были больше заинтересованы в супергравитации. Для описания сильного взаимодействия теория струн не требовалась, супергравитация представлялась перспективной, к чему тогда возиться со струнами?
Однако к теории струн стали относиться иначе, когда оказалось, что при помощи N = 8 чудовищно трудно проделывать какие бы то ни было вычисления. Даже без неудобных бесконечностей 154 типа частиц помимо гравитона и восьми гравитино не влезали ни в какие математические гроссбухи. По словам Хокинга, в начале 1980-х все считали, что даже у компьютера на один расчет уйдет четыре года, если он будет проверять все частицы, входящие в теорию, и нигде не затаится бесконечность, а вычислять без ошибок будет практически невозможно. Поэтому никто не был готов отказаться от научной карьеры ради какой-то одной выкладки.
Но главной причиной пробуждения интереса к теории струн в середине 1980-х стало понимание, что самые хорошие теории из этого семейства автоматически предполагают гравитон. При остальных попытках построить квантовую теорию гравитации ученые исходили из знания о предполагаемых свойствах гравитона и пытались построить теорию вокруг него, даже если для этого приходилось принять на борт еще 162 частицы. А теория струн позволяла работать с квантовыми уравнениями в общем виде и играть в математические игры – и оказалось, что замкнутые петли струн, описываемые некоторыми уравнениями, обладают именно теми свойствами, которые нужны, чтобы описать гравитацию: в сущности, они и есть гравитоны. Новая вариация на тему струн получила название «теории суперструн» – как же иначе. К 1988 году, когда вышла в свет «Краткая история времени», Хокинг с энтузиазмом поддерживал именно этот путь к суперунификации.