Во многих отношениях слабое взаимодействие напоминает электромагнитную силу. Опираясь на достижения квантовой электродинамики, физики в 1950-е и 1960-е годы разработали математическую теорию, которая описывала и слабое взаимодействие, и электромагнетизм одним набором уравнений. Это взаимодействие получило название электрослабого, и из такого объединения следовало одно существенное предсказание: со слабым взаимодействием должны ассоциироваться три типа частиц, которые вместе играют практически ту же роль, что фотон (частица света) в квантовой электродинамике. Но в отличие от фотона, эти частицы (так называемые W+, W– и Z0), согласно новой теории, должны обладать массой. И не просто любой, а очень даже определенной: у двух W-частиц масса должна быть примерно в девять раз больше массы протона, а у Z0 – в восемь раз больше массы протона. В 1983 году группа ученых, работавшая на ускорителе в ЦЕРНе под Женевой, обнаружила следы частиц именно с такими свойствами. Так что гипотеза об электрослабом взаимодействии получила экспериментальное подтверждение – и у физиков снова стало всего три теории, объясняющие устройство Вселенной.
Заручившись успехом, теоретики разработали теорию, похожую на квантовую электродинамику, чтобы описать сильное взаимодействие. Теперь мы знаем, что ядерные частицы (протоны и нейтроны) на самом деле состоят из фундаментальных сущностей, которые называются кварки. Кварки бывают разных видов, и физики по собственной прихоти дали им названия цветов – красные, зеленые и синие. Это, конечно, не значит, что кварки на самом деле красные, зеленые и синие – точно так же как коктейль «ржавый гвоздь» назван так не потому, что в нем содержится окисленное железо. Это просто названия. Но на этом капризы физиков не кончились: они и квантовую теорию, которая описывает взаимодействие кварков и отвечает за сильное взаимодействие, назвали «квантовой хромодинамикой» (от греческого слова, которое означает «цвет»). В наши дни есть несколько перспективных направлений, которые, вероятно, позволят создать единую теорию, объединяющую электрослабое взаимодействие и квантовую хромодинамику. Подобные наборы уравнений получили довольно пышное название «теорий великого объединения». Однако квантовая хромодинамика еще не получила таких надежных подтверждений, как электрослабая теория, а теории великого объединения как таковые лишь указывают на то, какую форму может принять будущая окончательная теория.
Хуже того, помпезность названия «теории великого объединения» подчеркивается еще и тем, что все попытки объединения вообще не учитывают гравитацию! Первая сила в природе, которую человек исследовал и хотя бы отчасти понял, при попытке загнать ее в квантовые рамки оказалась самой упрямой. А если теории великого объединения не охватывают гравитацию, мы имеем полное право сказать, перефразируя знаменитую фразу Хокинга о черных дырах, что великое объединение не такое уж и великое. Несмотря на то, что Хокингу удалось отчасти объединить квантовую механику и ОТО, когда он исследовал черные дыры и начало времен, гравитация и сегодня лучше всего описывается ОТО – классической теорией континуума.
До включения гравитации в «супер-единую теорию всего» (так, наверное, придется ее называть) «рукой подать» вот уже гораздо больше десяти лет. По логике вещей, стоит предположить, что сначала надо разработать квантовую теорию гравитации, а потом уже объединить ее с тремя остальными силами. А любая квантовая теория гравитации обязательно предполагает существование частиц-переносчиков гравитационного взаимодействия, что тоже напоминает фотоны и электромагнетизм (если вам интересно, то да, такие частицы есть и в квантовой хромодинамике, теории сильного взаимодействия, и называются они «глюоны», только их еще никому не удалось зарегистрировать). Физики даже заготовили название для гипотетических частиц гравитации – гравитоны. Но точно так же как «красный кварк» не значит, что он действительно красного цвета, так и то, что для частиц гравитации есть название, не значит, что их кто-то уже открыл или предложил удовлетворительную квантовую теорию гравитации.