Спектр ламп накаливания, применяемых для контроля качества солнечных батарей большой площади, может быть значительно исправлен и приближен к солнечному нанесением на внутреннюю поверхность колбы лампы (как перед вольфрамовой нитью накала, так и сзади нее) многослойных интерференционных светофильтров. Колба лампы предохраняет светофильтры от неблагоприятного воздействия внешней окружающей среды (в частности, повышенной влажности), а последствий термического воздействия излучения вольфрама, приводящего к кристаллизации слоев многослойного светофильтра и последующему отслаиванию его от стекла, удается избежать, как показал в своих исследованиях А. С. Иванцев (Всесоюзный институт источников света, г. Саранск), если ввести между диэлектрическими слоями светофильтра и стеклом тонкую полупрозрачную пленку хрома, нанесенную при большой скорости конденсации в глубоком вакууме. Осаждение постепенно испаряющегося слоя вольфрама на стекло и светофильтры также можно предотвратить, используя лампу-фару с нанесенными на ее колбу светофильтрами, внутрь которой встроена малогабаритная, но достаточно мощная вольфрамовая лампа в кварцевой оболочке. Из таких ламп-фар может быть собран имитатор Солнца для измерения параметров солнечных батарей любой площади.
Для измерения параметров крупных солнечных батарей и групп солнечных элементов сейчас разработаны и уже используются имитаторы на импульсных ксеноновых лампах. Эти имитаторы не имеют оптики, и равномерность освещения на большой облучаемой площади (2x2 м и выше) достигается за счет значительного удаления измеряемой батареи от лампы. Для коррекции спектра применяется интерференционный или иногда водяной фильтр. Очень важно, чтобы имитатор был оснащен соответствующей измерительной аппаратурой, которая должна обеспечить за время одного импульса длительностью около 1 мс замер всех точек вольт-амперной характеристики. Подобные имитаторы создают на площади 2,5x2,5 м облученность с неравномерностью +2 %.
При измерениях на импульсных имитаторах солнечная батарея не успевает прогреться, и ее температура близка к комнатной.
В качестве стандарта при квалификационных испытаниях в различных странах использовались разные значения температуры солнечных батарей и элементов: 40, 28 и 25 °C. В США и Западной Европе за стандарт принята температура 28 °C. Такой выбор вряд ли можно назвать удачным, поскольку при работе солнечные элементы и батареи обычно разогреваются, и реальные внеатмосферные и наземные условия эксплуатации солнечных батарей точнее отражает температура 40 °C. В СССР и странах СЭВ измерения готовых батарей, как правило, проводятся именно при такой температуре.
При измерениях на импульсных имитаторах вычислительные устройства автоматически пересчитывают характеристики батарей к задаваемой рабочей температуре. Пересчет ведется по средним температурным коэффициентам, которые имеют заметный разброс. Импульсные имитаторы снабжают устройством для термостабилизации измеряемых батарей, температуру которых контролируют в момент измерений. Термостабилизирующее устройство может быть выполнено на основе, например, инфракрасных излучателей, устанавливаемых при измерениях с темновой стороны батарей.
Необходимо также кратко остановиться на сверхмощных ксеноновых лампах непрерывного горения, каждая из которых (при достаточно хорошей имитации спектра внеатмосферного солнечного излучения) может создать необходимую плотность потока излучения 1360 Вт/м2 на поверхности солнечной батареи площадью в несколько десятков квадратных метров. Примером такого источника излучения может служить разработанная Всесоюзным научно-исследовательским светотехническим институтом металлическая ксеноновая лампа сверхвысокого давления мощностью 40 кВт. Лампа взрывобезопасна, снабжена двойным охлаждаемым водой кварцевым окном в металлическом корпусе, однако ввиду значительной неравномерности освещения по площади, достигающей ±20 % на краях облучаемой поверхности, такие лампы лучше использовать лишь в устройствах для исследования светового старения космической техники или приближенной оценки работоспособности солнечных батарей, а не при измерениях их фотоэлектрических параметров.